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Abstract - Developing motions for humanoid robots is time consuming. However, sport and dance 

instructors can easily adjust their students’ postures by simple touches. This suggests the possibility of 

exploiting touch for motion development, and allows us to propose a methodology based on this concept. 

To realize such a system, it is required to define how the robot should interpret touches. We propose a 

supervised learning approach to cope with this issue, and verify its feasibility experimentally. We then 

study the data collected by the algorithm, and show that the system is practical both for motion 

development and for studying human-robot tactile communication. In particular, we present 

considerations on the sparsity that characterize the whole process and suggest how sparsity can be 

exploited for efficient interpretation of tactile instructions. 
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1. INTRODUCTION 

Humanoid robots often have a high number of degrees of freedom, and this makes motion 

development a challenging task. In fact, it is often impossible to use automatic learning for motion skills. 

To overcome this issue, various ways of transferring human knowledge into robots were presented in 

literature. When the task is known in advance, a programmer may transfer his knowledge through the 

robot’s control algorithms, such as by designing a Central Pattern Generator (CPG) structure1. When the 

task is only partially known in advance, the programmer can provide modules or motion primitives, as in 

the by Mimesis model2, while the !nal user speci!es the motion task by composing using these 

elementary modules. Finally, the task may be unknown a priori, and in such case the !nal user must be 

able to transfer his knowledge to the robot directly, by using methods such as motion retargeting3 and 

kinesthetic demonstration4.  

Our proposed method, Teaching by Touching (TbT), aims to tackle the third case. The idea is to mimic 

the way sport or dance instructors use touch to correct their students’ movements. In conventional 

approaches based on kinesthetic demonstration4, the robot is completely passive during the learning 

process. The user is required to modify the posture of the robot to the desired one by application of the 

necessary forces. In contrast, we propose to equip the robot with knowledge on touch instructions 

meanings, and give it an active role in interpreting the given touch. More explicitly, in our setting, when 

the robot receives a touch, it estimates the user’s intention and moves accordingly. 

There are several possibilities for defining how touch instructions should be interpreted by the robot. 

The !rst possible choice is to force the user to learn and use a !xed protocol. In this setup the touch 



interpretation algorithms can be very simple. It is suf!cient to interpret the instructions according to the 

specified mapping. However, the user needs to remember which touch instruction leads to which 

movement, and this may be dif!cult for inexperienced users. Another approach consists in modeling the 

way humans communicate through touch. In this case the user can just intuitively provide touch 

instructions while the robot uses more complex algorithms to interpret the meanings based on all the 

available information. 

Our system takes the second approach, as explained in the following section. Section 3 will present the 

hardware and the system we developed, which can be used both for motion development and for studying 

the mapping between touch instructions and desired robot responses. The ability to study the mapping is 

important, because it allows the extraction of general criteria for interpreting tactile instructions, which can 

be used for future design of better tactile instruction interpretation algorithms. In this paper, the analysis of 

sparsity that characterizes the experiment data will be provided as an example of possible studies on the 

collected data. Section 4 will conclude the paper by summarizing the main results. 

2. ALGORITHM 

In order to build a model of the mapping between touch instructions and desired responses by 

supervised learning, it is necessary to collect data of how people expect their touches to be interpreted. 

Our system collects these data online, during the motion development process. In this way, no initial 

model is required, and the model can be progressively re!ned as the user interacts with the robot. Fig.1 

presents the data collection methodology employed in our implementation. When the user applies a touch 

instruction and the robot does not interpret the touch as expected by the user, the user noti!es the robot 



that the interpretation is wrong, and shows the correct interpretation by manually adjusting the robot limbs 

to the intended posture. The robot records this example of touch instruction and the corresponding desired 

response into its database, and uses it to improve its subsequent interpretations. 

The examples in the database are taken as input by a Kernel regression algorithm, which is used by the 

robot for interpreting touch instructions. Formally, the input ! ! !!!!!! consists of the touch sensor 

information ! ! !!, where n is the number of sensors. The context of the robot ! ! !!!! is included 

because it could in"uence the correct interpretation of the given touch instructions. In our implementation, 

the context is given by the current positions of the m motors and accelerometer values (o = 2) which 

represent the robot’s orientation with respect to the gravity. The output is a robot response !! ! !!, in 

the form of rotation angles of the motors. 

The output of the algorithm is de!ned as !! ! !!!!! !!!!!
!
!!! , where E is the number of examples 

in the database, !! is the current input from the sensors (touch and context), !! is the i-th example input, !! 

is the i-th example posture change, and !!!!! !!! is a kernel function, de!ned as 

! !!! !! !
! !"!!! ! ! !!!! ! !!!

!!!!!!!!
!!!

!!!!

!! !!!!! !!! !!!
!!!!!!!!!!

!"!!"#$%!  (1) 

with !!!!! denoting the input from the s-th tactile sensor and !! the set of sensors pushed in the i-th 

example, i.e. !! ! !!! !! ! ! !! (and similarly !! ! !!! !!! ! !!). This kernel assures that when the 

sensors are pushed further the joint rotation angles are larger. Its denominator has the role of reducing the 

in"uence of examples which contexts !! differ strongly from the current context!!!. The condition imposes 

Fig.1 



to ignore all examples that contains touch sensors which do not belong to the set of the currently pushed 

sensors !!. 

The output of the algorithm !! is used to modify the motion. In particular, the motion of the robot is 

de!ned as a set of keyframes !! , which specify the positions of the motors for a certain time !! of the 

motion (positions for times !! ! ! ! !!!! are obtained by linear interpolation of !! and !!!!). After 

selecting a time instant t on a GUI, the user can touch the robot, and modify its posture at time ! from !! 

to !! !!!  by simple touches. 

3. EXPERIMENT 

To verify the feasibility of the approach, we requested four people who never used the TbT system to 

develop a motion consisting of the !rst half of Algorithm Tais!, a dance from a Japanese TV show. The 

users were provided with a video of the dance motion, which they used as a reference of the dance 

movements and for deciding whether or not the robot motion they each created was satisfactory. 

3.1 HARDWARE 

The experiments were performed using a robot capable of recognizing touch, M3-Neony5, a small 

sized humanoid robot equipped with a high number of tactile sensors over its whole body surface. M3-

Neony features 22 servomotors, 90 tactile sensors (shown in Fig. 2), 3 accelerometers, 2 gyroscopes, 2 

cameras and 2 microphones. The tactile sensors are based on photointerruptors which translate the 

changes of the force applied to the robot into changes in the light received by the phototransistors, as 

shown in Fig. 3. The experimental setup can be seen in Fig. 4. In particular, a pedal is used to notify the 



robot that its tactile interpretation is wrong, and allows the user to start providing the correct interpretation, 

which is stored by the robot as a new (Ii, Mi) example of the database. 

3.2 RESULTS 

All of the users who participated in the experiment performed the task with the proposed system 

without dif!culties, or need for assistance, showing that the system is intuitive for !rst time users. The 

development times for the four users were respectively 221, 222, 176 and 476 minutes. Direct inspection 

of video recordings of the interaction shows that the users spent a lot of time, beyond our expectations, on 

stabilizing the robot. This infers the importance of applying self-stabilizing techniques6, even for the 

development of quasi-static motions. Future works will incorporate automatic stabilization, in order to 

ease the motion development for inexperienced users. 

An advantage of our system is, as previously stated, the possibility of studying the features of the way 

users employ touch in the context of motion teaching. One of the main features that can be noticed by 

direct data inspection is the sparsity in the touch instruction meanings taught by the users. In practice, 

users mainly touched few sensors and associated them with the movement of few motors. Gini index was 

used to evaluate this sparsity quantitatively. The Gini index is a measure of statistical dispersion, ranging 

from 0 (equal distribution) to 1 (distribution concentrated at a single point), usually employed as a 

measure of inequality or sparsity7. Formally, given a vector ! ! !!!!!!!, its Gini index can be 

computed by taking the following two steps: 

1. Reorder the values of ! in increasing order, i.e. define ! ! !!!!! !!!! !!"! with !!! ! ! ! ! !  

permutation of !!! such that !!!!! ! !!!!!!!! ! ! ! ! ! ! 

Fig.2 

Fig.3 

Fig.4 



2. Compute the index as ! ! ! !!!
!!! !!!!!!!!!
! !!!

!!!
  

Table 1 reports the mean of the Gini index for the sensor vectors !! and the motor vectors !!, averaged 

over the whole set of examples ! ! ! ! !.  

This high Gini index values suggest that the mapping between sensor inputs !! ! !! and motor 

outputs !! ! !! could be sparse as well. To verify this hypothesis, we approximate the mapping with a 

linear function, and study the effect of enforcing sparsity on the mapping. More speci!cally, for a given 

example !, let us consider all of the preceding !! , ! ! ! ! ! ! !. Let us train a linear predictor 

!! ! !!!!!! such that !! ! !! ! !! !!! ! !. Let us set the k-th row of !!!!! as !!!!! !!!!! , with 

!!!!! ! ! and !!!!! ! !! as minimizers for the cost function 

!
!! !!

! ! !!! ! !!! !!
!
! ! ! ! ! !

! !!! !

!
! ! !!! !

!
!!!  (2) 

where !!
!  is the rotation for the k-th motor in !!, ! ! denotes the Euclidean norm, ! ! the !! norm, 

and !! ! ! ! are constants.  

When ! ! ! , this minimization resembles a classic linear regression and when ! ! !  the 

minimization favors sparsity8. We note, however, that increasing ! does not necessarily bring a sparsity 

enforcement measured by any sparsity measurement criteria. This appears very clearly by observing Fig. 5, 

which reports the Gini index, for different values of !, of the rows of !!!!!. In particular, Fig. 5 shows the 

Gini index of the rows !!!!!, averaged over the rows ! (corresponding to the motors) of each predictor !!, 

averaged over all of the predictors !!, ! ! ! ! ! ! !. We notice that an increase of ! initially causes a 

decrease of the Gini index. The index starts to slowly increase only for ! ! !!!", and has an abrupt 

increase for ! ! !!!". 

Table1 



Similarly, the Gini index of the predicted motor responses !!!! ! !! !
!!!! , averaged over the 

examples ! ! ! ! ! ! !, alternately increases and decreases until ! reaches 0.98, which is when the 

index starts increasing very rapidly, as visible in Fig. 6. The average prediction error, plotted in Fig. 7, is 

defined for each predictor !! as  

!!!! ! !!!! ! !! !
!!!! !

 (3) 

It can be seen that this error starts to decrease at !>0.98. The fact that where the increase of the actual 

sparsity measured by Gini index occurs, which is at !>0.98, corresponds to where the strong decrease in 

the error starts, provides support to our hypothesis that increasing the sparsity of the predictor can lead to 

increases in the predictor performances. 

The response to a tactile instruction, !!, i.e. the variation of the motor angles due to touch, clearly lies 

in !!, where ! is the number of motors, or more precisely in a smaller space ! ! !! that is defined by 

the robot's physical constraints. In a previous work9 it was shown experimentally that the responses can 

actually be constrained to a linear subspace of !. This is similar to the fact, often observed in literature, 

that many tasks can be accomplished by movements that lie in a small linear subspace of all the possible 

movements10.  

More interestingly, DallaLibera, et al9 verified that if we know some part of the task, concretely some 

keyframes !!!!!  assumed during the task, and we compute the linear subspace ! ! !"#$ !

!!!!! !, then with good probability the responses to tactile instructions lie in this linear subspace. This 

fact can be used in the following way. Given a tactile input !!, the estimated desired movement is 

computed (this phase corresponds, in our simple linear regression study, in computing !!!! ! !! !
!!!! ). 

Fig.5 

Fig.6 

Fig.7 



Then, since we know that there is a good probability that the desired movement lies in !, we project !!!! 

on !. In particular, let us define the matrix !! ! !!!!!!!! of the frames available before the couple 

!!!!!! !!!!! is taught, and a set of multipliers !!!! such that !!!! ! !!!!!!. Let us then choose !!!! as 

the minimizer of 

!!!! ! !!!!!! !
! ! ! !!!! ! (4) 

where ! is used to enforce the sparsity11 in the coefficients that multiply the frame values.  

As was done before, we can use the Gini index to study the effect of ! on the actual enforced sparsity. 

In the first instance, we can analyze its effect on !!!!. Fig. 8 reports the Gini index, averaged over 

! ! ! ! ! ! !! of the coefficient vector !!!!. We notice that by increasing !, the Gini index of !!!! 

monotonically increases up to !=5.8, and then it starts to decrease very slowly. The Gini index, averaged 

over ! ! ! ! ! ! !! of the projected prediction !!!! ! !!!!!! is plotted in Fig. 9. Also in this case, the 

sparsity monotonically increases until !=5.8, when it then begins to decrease very slowly. The average 

error for the projected prediction, computed as the average over ! ! ! ! ! ! ! of 

!! ! !!!! ! !!!!!!!! ! (5) 

is reported in Fig. 10. We notice that the best predictions are obtained for strictly positive ! (the minimum 

error is obtained for !=3.52), i.e. we see that enforcing sparsity (by non-zero !) to some extent can 

improve our estimation of the desired motor response. 

4. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a system which allows teaching whole body motions to humanoid robots by 

tactile interaction. Conceptual aspects of the exploitation of touch for motion development were brie"y 

Fig.9 

Fig.10 

Fig.8 



discussed, and a practical system implementation, which employs a small-sized robot equipped with 90 

tactile sensors over the whole body, was brie"y introduced. This system has a two-fold role. On the one 

side, it allows inexperienced users to develop robot motions. On the other side, it allows studying the way 

users employ touch to intuitively communicate with robots. 

As an example of the possible analysis that can be done on the meaning associated to touch instructions, 

this paper reported a study on the importance of sparsity in the mapping between pressed sensors and 

desired robot movements. First, quantitative measures of the sparsity of the input signals (pressed touch 

sensors) and of the output signals (motors that should be moved) were reported. Successively, the 

possibility of improving the mapping from tactile instructions to motor movements by imposing sparsity 

was investigated. Finally, the idea of using the frames of the motion itself to improve the prediction on the 

robot movement was studied. In particular, it was shown that if we project our prediction on the linear 

subspace defined by few frames (again, by imposing sparsity in a coef!cient vector), then the prediction 

of the robot movement desired by the user can be improved. 

This analysis provides us with important criteria for the design of new algorithms for tactile 

interpretation. In particular, it tells us that by ensuring sparsity, performance can be greatly improved. For 

instance, if a neural network is employed for mapping tactile instructions to robot responses, then using 

rectifying neurons12, which assure sparsity, appears to be a good choice. Future works will deal with the 

extension of the analysis reported here, and the design of a better performing algorithm for tactile 

interpretation based on this analysis. 
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  Fig.1. Teaching by Touching motion development 
process. 

Fig.2. Diagram of M3 Neony’s motors and sensors. 

Fig.3. Schema of the tactile sensors of M3-Neony.    

Fig.4. Experiment environment, pedal is shown in 
inset. 

Fig.5. Average Gini index of the rows !!!!!for 
different values of !.    

Fig.6. Average Gini index of the predicted motor 
response !!!! for different values of !. 



 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

  

Fig.7. Average error !! for different values of !.    Fig.8. Average Gini index of the coefficients !!!! for 
different values of !.    

Fig.9. Average Gini index of the motor responses 
!!!! for different values of !.      

Fig.10. Average error !! for different values of !.      



Table 1. Gini Index 

 A B C D 

!"#!!!!!<!!!!!!> 0.96 0.90 0.98 0.92 

!"#!!!!!<!!!!!!> 0.82 0.78 0.87 0.70 
 


