Control of real world complex robots using a biologically inspired algorithm
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Abstract: Elementary living beings, like bacteria, are able to reach food sources using only limited and very noisy sensory
information. In this paper we describe a very simple algorithm inspired from bacteria chemotaxis. We present a Markov chain
model for studying the effect of noise on the the behavior of an agent that moves according to this algorithm, and we show
that, counterintuitively, the application of noise can increase the expected average performance over a fixed available time. After
this theoretical analysis, experiments on real world application of this algorithm are introduced. In particular, we show that the
algorithm is able to control a complex robot arm, actuated by 17 McKibben pneumatic artificial muscles, without the need of any

model of the robot or of its environment.
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1 INTRODUCTION

Bacteria chemotaxis, the process by which bacteria move
toward increasing concentrations of nutrients, is an important
topic of the biological field. In particular, the movement of
Escherichia Coli (E. Coli) was intensively studied [1]. This
bacterium has only two ways of moving, rotating its flagella
in clockwise or counterclockwise direction. When the flag-
ella rotate counter-clockwisely they align into a single bun-
dle and the bacterium swims in a straight line. Conversely
clockwise rotations break the flagella apart and the bacterium
tumbles in place. The bacterium keeps alternating clockwise
and counterclockwise rotations. In absence of chemical gra-
dients, the length of the straight line paths, i.e. the counter-
clockwise rotations, is independent of the direction.

In case of a positive gradient of nutrients, E. Coli reduces
its tumbling frequency. In other terms, when the concen-
tration of nutrients increases the bacterium proceeds in the
same direction for a longer time. This simple strategy, usu-
ally modeled by a biased random walk, is able to drive bacte-
ria to high concentrations of nutrients despite the difficulties
in precisely sensing the gradient.

In [2] we proposed a simplified, more generic model for
the movement of E. Coli, that we termed Minimalistic Behav-
ioral Rule (MBR). Simulations with this model showed that
while in most engineering approaches noise is considered as
a nuance, that must be filtered to extract the underlying in-
formation, noise can actually help bacteria in reaching high
concentrations of nutrients.

This paper provides a theoretical analysis of the phe-
nomenon. A Markov chain model is introduced in section 3
to explain the beneficial effect of noise on the movement of
an MBR-driven agent. The possibility of employing MBR

for the control of complex systems is then shown experi-
mentally by using a robot arm driven by pneumatic actua-
tors (Section 4). Finally, Section 5 concludes the paper by
discussing the results.

2 ALGORITHM

As briefly described in the previous section, E. Coli pro-
ceeds in the same direction for longer times when the con-
ditions are improving, i.e. when the the concentration of nu-
trients increases, and proceeds by random walk otherwise.
In [2] we defined a very general control algorithm that fol-
lows a similar principle. This algorithm, besides being able
to explain phenomena regarding bacteria chemotaxis, can be
applied for the control of robots, as will be shown in this
paper. More formally, the algorithm can be described in the
time-discrete domain as follows. Let us denote by F; an eval-
uation function (e.g. the concentration of nutrient in the bac-
teria’s case), and by AF; its variation from time ¢ — 1 to time
t. Let us then define a generic motor command u; € R™ that
the agent sends to its actuators. The MBR sets w1 as

U + UR Zf AEt > 0
Ut41 = . (1)

random selection otherwise

where R € R™ is a random variable, n € R is a mul-
tiplying factor and “random selection” corresponds to ran-
domly picking a motor command in the whole motor com-
mand space. Intuitively, MBR tells to change randomly the
motor command when the conditions get worse, and keep the
current motor command when conditions are improving, as
for animal’s klinokinesis [3]. In more detail, when the condi-
tions are improving, the motor command is not kept identical
to the previous step, but it is slightly modified, with a ran-
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Fig. 1. Paths taken by agents with different values of n:
agents starting from [0, —5]7, [0,0]7 and [0,5]7 have, re-
spectively low, medium and high values of 7. Each trajectory
corresponds to 100 time steps of the agent.

dom perturbation whose intensity is modulated by 7. Fig. 1
shows an example of the effect of this random perturbation
on the movement of an MBR-controlled agent. Suppose to
have an agent that moves on a 2D plane. Let z € R? be
the agent position. Assume the agent to move by steps of
fixed length s, along the angle indicated by u; € R, i.e.
Typ1 = @+ 5-[cos(ug), sin(ug)]” and to have an evaluation
function that increases along the x axis, i.e. By = [1,0]Tz;.
If the perturbation 7 is too small, as for the agents starting
from [0, 5]7 in Fig. 1, then every motor command u that that
bring brings the agent closer to the target, even a very tan-
gential and inefficient one, will be employed for a long time.
If the perturbation is too big, as for the agents starting at the
bottom of the figure, then the agent keeps changing direction,
even when the movement is headed straight to the goal. If
the perturbation amplitude 7 is appropriate, as for the agents
starting in the middle of Fig. 1, then the agent will rapidly
increase F; with a good trajectory.

3 THEORETICAL ANALYSIS

In order to understand the reasons of the performance im-
provement given by an opportune value of 1 # 0, let us con-
sider again example reported in the previous section. Let us
discretize the direction taken by the agent into [NV possible
states of a Markov chain, with the state 7, 1 < 7 < N indi-
cating the probability of taking the directions in the range
[—77 + L(;V_l) ,—T + 2L,
where transitions due to the perturbation 7 are limited to
neighboring states. In particular, let us assume to transit from
a state ¢ to one of its neighbors ¢+ 1 and ¢ — 1 with probability
v, and remain in the same state with probability 1 — 2wv, as
shown in Fig. 2. We note that only for the states correspond-

Let us restrict to the case

Fig. 2. Representation of the Markov chain. Blue dotted
arrows represent the selection of a new node with uniform,
1/N probability. Red solid arrows represent transition to the
neighboring states with probability v and green dashed ar-
rows indicate loops of probability 1 — 2uv.

ing to directions that lead to an increase of I, i.e. the states
% +1<:< %, such outward transition to the neighboring
states exist. The states corresponding to directions for which
AFE; < 0, i.e. the directions that imply a random selection
in the MBR, have outward transitions that reach each state,
including the current state, with probability 1/N.

The evolution of the probability of the states is described
by the following equations. Let us denote by p; ; the proba-

1_23N1<;‘> Pit
PN . . . . _ i= 4+1 Pi,
bility of being in state 7 at time ¢, and by g = ———=3~——

the probability of being selected by random selection when
AFE; < 0. With these definitions

Dijt+1 =
vpit1,t + 9 if i = %
(1 —=2v)pi¢ +vpit1,e+9 ifi= %—i—l
(1—20)pi +v(pig1e +pic1,) +g if F+2<i< 3N 1
(1 —=2v)pi,e +vpi—1,t+g ifi=2
vpi—1,t+ g zfzf%—i-l
g otherwise
@)

Intuitively, when v # 0 at every time step there is a “flow
of probability” between the nodes. In detail, even starting
from a uniform probability of the nodes p; o = 1/N, the
nodes 1 < 1 < % and%—i—l < ¢ < N assume a lower
probability in one time step. This causes a flow of probability
from nodes % +1to %, % +2to % + 1, etc. (and, symmet-
rically,from% —kto % —k+1,for0<k< % —1).

Fig. 3 shows the evolution of the probability for different
values of v (corresponding, in the MBR, to different values of
n) at different time instants ¢ starting from a uniform distri-
bution, i.e. starting from a random direction of the agent. We

note that at the beginning a higher value of v is able to “speed



up the flow”, that makes the distribution peaky around states
% and % + 1, corresponding to angles close to 0. As times
goes on, however, the distribution becomes more peaky for
lower settings of v, as shown in the last panel of Fig. 3.

Let us analyze the chain for ¢ — oco. The stationary dis-
tribution, computed from Eq. 2 and p; 11 = p;,, is

24(n+4)v cpo N . _ 3N
n(8+6n-+n2+96v) ) ifi=g A= +1
) _ ) —48:2448i(nt+1)—12n—-9n> .. N . _ 3N
Pit+1 = n(8+6n+n2+96v) ify +1<i< 5
96v .
(8 F6ntn2F960) otherwise

3

If we take the derivative with respect to v we find that
dpd% is always negative for % +1 < < % (states that
lead to positive AF,;) and always positive for the other states
(that lead to a negative A F;). In other terms, over short times
high values of v are preferable, but as the time available in-

creases, it is more efficient to have a lower value of v. In
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Fig. 3. Probability of a Markov chain of N = 20 states start-
ing from a uniform distribution at time ¢ = 0. Each panel
corresponds to a time instant: ¢ = 1 (top panel), t = 10 (cen-
tral panel) and t = 10'° (bottom panel). Each panel reports
the distribution obtained 3 different values of v: 1/64 (blue
dotted line), 1/4 (green solid line) and 1/2 (red dashed line).

short, there is a trade-off between the speed with which good
motor commands w are chosen, increased by higher values of
7, and the precision obtained after a long period, improved
by decreasing 7. Section 5 will briefly discuss this issue.

These relationships between the noise intensity 7, the dis-
tribution of the directions taken by the agent and time can
be confirmed by numerical simulations of the MBR, with re-
sults that resemble the Markov chain approximation here in-
troduced. Actually, the probability density function p(6) of
taking direction 6 is the solution of the following Fredholm
integral equation of the second type:

w/2 1 /2 ;
(97¢)p(¢)d¢+ ffﬁ/2p(¢) ¢

—m/2 27

w/2
_ L, / (K(6,0) - Lyp@)de @

) o

p(0)

where K is the probability of taking the direction ¢ when the
current direction is 6 due to the random perturbation R. For
instance, if R is Gaussian, then K is a Von Mises distribu-
tion centered in 0, i.e. K(0,¢) = % with I(x) the
modified Bessel function of order 0.

However, no closed form can be obtained for p(6). The
main advantage of the Markov model proposed in this section
is thus to allow making predictions on the behavior of an
MBR controlled agent, using simple in analytical formulae,
without lengthy Monte Carlo simulations.

4 PRACTICAL EXPERIMENTS

Previously reported simulation experiments [4] show that
the application of MBR is not restricted to the simple 2D case
described beforehand. In particular, it was shown that MBR
is able to increase the evaluation function F; of systems with
dynamics

Ti41 = f(90t7 Uty nvy Utfd) &)

even when z; € R™ u; € R™ with n and m in the or-
der of 40 or more dimensions. It was also shown that the
function f can be a nonlinear function of the previous inputs
Ug—1,-..,Ut—q, and in particular, even when a dead time is
present in the system, i.e. x;11 = f(x¢, us—q).

To test the MBR approach in a real world setting, we em-
ployed the biologically inspired robot arm shown in Fig. 4.
This arm has 7 degrees of freedom driven by 17 McKibben
pneumatic muscles. Each muscle is equipped with a pressure
sensor, used for closed loop pressure control.

The robot is controlled by setting the variation of the pres-
sure in each of the 17 pneumatic actuators, i.e. u; € R,
The task chosen consists in reaching repeatedly three targets
in the robot reachable space. These targets are located at the
robot’s right, left and bottom part of the reachable space.



To verify the robustness of the approach to sensory input
noise, we tested three ways of measuring the end effector
position, from which the function E} is computed:

1. A four dimensional vector composed by the end-
effector centroid in the images of the two cameras
mounted on the robot’s head.

2. The three dimensional position of the end effector, ob-
tained using stereo computation.

3. A three dimensional position of the end-effector ob-
served by a motion capture system (EvaRT, Motion
Analysis Ltd.)

The task could be achieved with all the three types of the
information, showing the adaptability and the robustness of
the approach. We note that the value of 77 was chosen empiri-
cally, without fine tuning, and kept constant in all the settings.
In fact, although not optimal, any 1 # 0 can be employed for
achieving the task.

The real world experiment is different for many points
compared with the system analyzed in Section 3: the di-
mensions of the input command u, of the space x, the map-
ping between u and z, the noise in the sensory system, etc.
Nonetheless, as Fig. 5 shows, the distribution of the cosine
between the optimal direction (straight to the target) and the
direction taken by the robot during the whole experiment is a
decreasing function, as predicted by our simplified model.

5 CONCLUSIONS

In this paper we proposed a Markov chain model to study
MBR, a simple, biologically inspired algorithm for robot
control. We showed that the algorithm is able to drive a pneu-
matic robot arm’s end-effector to desired targets without any
knowledge on the mapping between the control signal v and
the resulting evaluation function variation A E; or on the di-
rections taken by the links when each muscle is contracted.
We analyzed the distribution of the cosine between the opti-
mal movement and the direction actually taken by the robot,
and showed that the probability is a decreasing function of
the angle, as predicted by our model, despite the numerous
differences between the model and the real world setup.

Future works will need to define policies for changing n
online and maximize the performances. We note that starting
with a high 7 and decrease it over time, as in Simulated An-
nealing, may allow obtaining solutions with high precision
(due to a low final 1)) in a short time (due to an initially high
7). However, estimating an appropriate time constant for the
adaptation of 7 is very complex. In fact, this depends on how
fast the optimal u changes, which, in turn, depends both on
the evaluation function E and on the system dynamics f.

We note that, despite the similarities, MBR presents ad-
vantages over classical Simulated Annealing. MBR does not

Fig. 4. The robot arm used in the experiment.
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Fig. 5. Frequency of the cosine between the direction taken
by the MBR-controlled robot arm and the direction straight
to the target location.



require a good estimation of the evaluation function, but only
a binary value specifying if it is increasing or not. Further-
more, it does not need to return to the one state x; after notic-
ing that ;4 is a less favorable state. This is fundamental
when dealing with real word robots of unknown dynamics.
Comparison of the two algorithms in real world setups is,
however, an important point to be focused in the future.

REFERENCES
[1] AdlerJ (1976) The sensing of chemicals by bacteria. Scientific
American, 234:pp. 40-47.

[2] Ikemoto S, DallaLibera F, Ishiguro H (2011) Stochastic reso-
nance emergence from a minimalistic behavioral rule. Journal
of Theoretical Biology, 273(1):pp. 179-187.

[3] Dusenbery DB (2001) Performance of basic strategies for fol-
lowing gradients in two dimensions. Journal of Theoretical Bi-
ology, 208(3):pp. 345 — 360.

[4] DallaLibera F, Ikemoto S, Minato T, et al. (2010) A parameter-
less biologically inspired control algorithm robust to nonlinear-
ities, dead-times and low-pass filtering effects. In: Proceedings
of SIMPAR2010. pp. 362-373.



