
Developing Central Pattern Generator based periodic motions using

tactile interaction

Fabio DallaLibera∗, Takashi Minato†, Hiroshi Ishiguro†‡, Emanuele Menegatti∗

∗ Department of Information Engineering (DEI),

University of Padua, Via Gradenigo 6/a, I-35131 Padova, Italy
† ERATO, Japan Science and Technology Agency,

Osaka University, Suita, Osaka, 565-0871, Japan
‡ Department of Adaptive Machine Systems,

Osaka University, Suita, Osaka, 565-0871 Japan

Abstract—Controlling robots by Central Pattern Generators
(CPGs) is a widespread bio-inspired technique for the real-
ization of robot motions. The numerous parameters of the
CPGs, often specialized for a specific task, are usually set by
automatic techniques like genetic algorithms or policy gradient.
However, using these approaches leaves the users with little
control on the resulting motion, which can be modified only by
changing the evaluation function. Conversely manually setting
each parameter gives the user full control over the motion,
but identifying which parameters should be altered to obtain a
desired effect is not intuitive and therefore developing motion
requires time and effort. We present a system that allows
programming the CPG parameters by interacting with the
robot and in particular by intuitively touching the robot, giving
the user full control on the resulting motion without requiring
a direct modification of the parameter values.

I. INTRODUCTION

Many of the periodic movements of animals, like swim-

ming, walking or chewing, are controlled by groups of

neurons called Central Pattern Generators (CPGs) that can

produce a rhythmic activity even in the absence of external

inputs. When motor and sensory feedback is included the

resulting entrainment between the robot and the environment

brings several advantages in terms of stability and ability to

adapt to environmental changes [1]. To achieve the same

desirable characteristics of simplicity and robustness CPG

had been proposed for the control of periodic motions of

many kinds of robots, for instance hexapods [2], quadrupeds

[3], [4], [5], bipeds [6], [7], [8], [9], snake robots [10], etc.

Often artificial CPGs consist of weakly coupled oscilla-

tors, where each oscillator consists of a couple of neurons

representing extensor and flexor neurons [11]. As reported

in [12] the determination of the numerous CPG parameters

is still difficult because they depend both on the robot

and on the environment. Usually CPGs parameters are set

automatically by genetic algorithms [11], policy gradient

[13], reinforcement learning [12], or similar techniques. Al-

though there are several advantages, this gives the user little

control over the resulting motions, in fact the only strategy

available for controlling the resultant movement is changing

the fitness/evaluation/reward function. Some features like the

similarity to human movement cannot be easily expressed

mathematically and therefore, for instance, when developing

a walk motion for humanoid robots if the speed is used as

a reward it is difficult to prevent the resultant motion from

being fast and awkward. Conversely manually setting each of

the parameters, for instance from a console or a slider-based

graphical user interface, allows the user to finely control the

motion. This is, however, time-consuming, and, especially

in the case of oscillators which are not easy to predict,

like Matsuoka’s neuron [14], it can be very unintuitive and

difficult.

In this paper we propose to use tactile interaction to set

the CPG parameters. In particular we imagine the user to

watch the movement of a robot equipped with touch sensors,

touch the robot to modify the parameters, observe the change

and repeat the process until the desired robot movement is

satisfactory. More concretely, we assume each face of the

robot links to be covered by a binary touch sensor. The touch

pattern applied by the human operator over time on these

sensors is used to modify the CPG parameters.

To allow this interactive process we need a highly pre-

dictable network of oscillators. In fact, if similar touches

could lead to quite different consequences we can imagine

that the usability of the system would be strongly negatively

affected. Section II therefore presents the highly predictable

oscillator network we employed. A strategy to convert user

touches to CPG-parameter modifications must then be de-

fined. In section III we illustrate our proposal, based on the

assumption that to have an intuitive protocol the users should

touch the part whose movement they want to modify.

We report experimental data relative to the development of

a walking and a side stepping motion for a humanoid robot

in section IV and conclude in section V presenting future

works.

II. CPG NETWORK

As stated in the introduction we need the CPG network to

be easily predictable, so that we can map touches to desired

effects, and in turn identify the parameter change needed to

obtain the desired effect.

Many alternatives are available for the choice of oscil-

lator/neurons employed for the realization of the CPG, for

instance sinusoidal oscillator [7], Hopf or adaptive frequency

Hopf oscillator [8], Rayleigh oscillator, Van Der Pol oscil-

lators [15], FitzHugh-Nagumo oscillator [4], Hopfield and

Hopfield with synaptic depression [16] or Matsuoka’s [14].

For its simplicity, robustness and predictability we decided

to employ the Hopf oscillator, which essentially provides a

sinusoidal signal.

The predictability of the system is then strongly influenced

by the oscillator interconnections. Among all the possible

network interconnections, we can notice that essentially five

structures are present in the literature:

1) chain [10], used mainly for snake robots

2) star [17], that is a “peacemaker”/ “clock” oscillator

provides a synchronizing signal to all the others

3) tree [18], where essentially the oscillators are con-

nected as a tree, from the proximal to the distal joints

4) connection between homologous joints [15], [3], i.e.

joints with a similar function

5) full connection between the oscillators [5]

We decided to employ a star structure. This configuration

is very general and task independent since no assumptions

are made about which joints should be synchronized, a

feature required by our system. Star structure is also highly

predictable, since the peacemaker oscillator gives a synchro-

nizing signal to all the oscillators controlling the joints but

no unexpected effects occur due to the interaction between

groups of oscillators as in the case of connection between

homologous joints. Precisely, our implementation uses a

directional coupling from the clock oscillator to the others.

This assures the maximum system predictability. Tests on

whether a bidirectional coupling can improve entrainment

with the environment without affecting the ability to foresee

the system behavior will be performed in future works.

More formally in our implementation each of the n

degrees of freedom of the robot is controlled by one oscillator

and a further “clock” oscillator provides reference signals

for these oscillators. Let us identify by C0 the reference

oscillator and by Cj , 1 ≤ j ≤ n the oscillators controlling

the robot joints,

Using the complex number representation for the Hopf

oscillator [19] we have for the j-th oscillator, 0 ≤ j ≤ n

żj = γ
(

µj − |zj|
2

)

zj + iωjzj + Fj(t)

mj = ℜ{zj} + oj

(1)

In detail

• zj ∈ C is the state of the oscillator

• mj ∈ R is the control signal for the actuator

• γ is a coefficient for the speed of recovery after pertur-

bation [8]

• µj ∈ R, µj ≥ 0 controls the amplitude of the oscillation

• ωj ∈ R, ωj ≥ 0 controls the oscillation frequency

• Fj(t) is an external perturbation signal

• oj is an offset value used to set the position around

which the joint oscillates

Since we decided to restrict to periodic motions to ensure

rational ratios between the frequencies of oscillation of each

pair of joints we set

ωj = pjω0 (2)

1 ≤ j ≤ n, pj ∈ N. In the current implementation no

feedback signal is introduced, so F0(t) is zero (the main

clock is not influenced by the external world) while for

1 ≤ j ≤ n

Fj(t) = weiφj z
pj

0
(3)

that is Fj(t) consists essentially of the perturbation from

the clock oscillator that permits a synchronization of the

whole system. The reference signal z0 is elevated to the

power pj so the frequencies of the oscillator and of the

perturbation are close. The similarity of the frequencies leads

to an easier synchronization and a predictable phase between

the j-th oscillator and the reference one [20]. The coefficient

w determines the coupling strength between C0 and the other

oscillators while the term eiφj changes the phase difference

between the clock oscillators and the other ones. In the

current implementation µ0 = 1, w = 0.1 and γ = 1000.

III. TOUCH PROTOCOL

As stated in the introduction we based our protocol on

the assumption that touching the part whose movement is

to be modified should be intuitive for human operators.

From the previous section users can easily imagine that for

each oscillator we can alter its amplitude (parameter µj),

its frequency (parameter pj), its phase with respect to the

reference oscillator (parameter φj) and the offset position

around which the joint moves (parameter oj). In addition

it is possible to use ω0 to change the global speed of

the movement. Depending on the pressed touch sensors we

decide which is the oscillator whose parameters should be

modified. This is done by selecting the most distal joint that

causes a movement of the pressed sensor in the direction

normal to the sensor surface. We then decide which feature

of the movement (amplitude, frequency, phase or offset) is

affected depending on the pressure pattern. Expressly, if the

user keeps pushing the sensor for a very long time the

offset is modified. If the user pushes for a shorter time the

amplitude is modified, while a single tap is used to change

the phase. Two consecutive taps are used to change the

frequency, and in particular if the touch is applied to the

main body the reference oscillator frequency ω0 is changed.

More formally suppose the robot’s main body (in the case

of a humanoid robot, the torso) is fixed in space, and the

vector denoted by dj represents the derivative of the position

in the space of the center of the pushed sensor when the j−th

joint is rotated. Identify ns as the vector perpendicular to the

pushed sensor surface. Denote by j1, j2, ...jq the indices of

the q joints that connect the robot’s main body to the link

where the sensor is located, in order from the most distal

to the most proximal (see Fig. 1); we identify the joint js

such that ρs =< ns, djs
> 6= 0 and < ns, djk

>= 0 for

s < k ≤ q. If this joint doesn’t exist we simply ignore the

sensor pressure (unless it is on the main body, as will be

specified later).

(a) (b)

Fig. 1. Example of the determination of the joint whose parameters should
be modified when a sensor is pressed. In the first case the parameters of
joint j1 are modified, in the second case, since the ρ1 =< ns, dj1 > is
zero j2 is selected.

Once js is determined the phase of joint js (∠zjs
) is

used as a time reference. Expressly the pushing time τjs
is

measured in terms of phase difference between the release

time and the pushing time, counting for the phase reset-

tings (i.e. the phase difference is considered non-negative,

monotonically increasing and can be larger than 2π). We

distinguish the following cases:

• If τjs
> ΘO (the user pushes for a very long time) the

offset parameter is changed according to the direction of

the applied force, i.e. ojs,new = ojs,old + sgn(ρjs
)∆O ,

where sgn is the sign function.

• If ΘA < τjs
≤ ΘO the amplitude parameter is updated

by the value sgn((ρjs
∗mjs

)∆A where mjs
is the value

of the output at the pushing time.

• If the user pushes for a time τjs
≤ ΘA, releases the

sensor and doesn’t push it for a time ΘP then the phase

parameter φjs
is updated such that in the following

cycles the closest maximum of oscillation occurs at the

pushing time, i.e. the quantity −∠(mjs
∗ zjs

) is added

to φjs
, where zjs

and mjs
are considered at the pushing

time.

• If the user pushes for a time τjs
≤ ΘA, releases the

sensor and before a phase change of ΘP pushes the

sensor again then pjs
is incremented or decremented

respectively if this second pushing time τjs,2 is greater

or lower than ΘA.

• Similarly, if the user pushes the robot main body for

a time ∆φ0 ≤ ΘA releases the sensor and before a

phase change of ΘP pushes the sensor again then ω0 is

increased or decreased by the quantity ∆ω0
respectively

if the second pushing time is greater or lower than ΘA.

In our implementation all the ∆ and Θ values are constants,

expressly ΘO = π, ΘA = π
6
, ΘP = 2π

3
, ∆O = ∆A = π

12
,

∆ω0
= 1.

Given these definitions, we can expect the protocol we

defined to be more intuitive than a simple manual parameter

tuning. For instance, if users wants to change the center of

oscillation of some joints they have to consider the position

of the various motors in the kinematic chain, and decide

(a) (b)

Fig. 2. Schema of the joints of the robot with their IDs (a) and photo of
Vision 4G (b).

which motor offsets should be modified. Then, depending on

how each motor in mounted on the robot and on the estab-

lished conventions, they need to evaluate whether the offset

parameters of each joint should be increased or decreased.

Conversely, with our approach the users are just required to

keep pushing the robot parts in the direction they want the

centers of oscillation to be moved.

IV. SIMULATIONS

In order to validate the feasibility of the experiment we

developed a crawling movement, a walking gait and a side-

step motion. To apply the touch protocol defined beforehand

we need to distinguish between sensor pressure due to the

gravity and pushes applied by the user. This module is

currently not available in our system, so we decided to

employ a simulator as a proof of concept. The user is able

to interact with a 3D rendering of the robot (see figures 5,

5 and 6) where each link face simulates a touch sensor that

can be clicked with the mouse (details of the simulator and

advantages in using simulated touch sensors are reported

in [21]). The simulator is based on ODE and models a

customized version of Vision4G1. The robot photo and its

joint schema are available in Fig. 2.

Although the results here presented as a proof of concept

were obtained using a simulated robot, we aim our technique

to be applicable to real robots. Since some CPG parameter

configurations can lead to robot self-collisions that can

damage the actuators, these collisions must be predicted

online. The collision detection should therefore be very fast,

but it can however be inaccurate. More precisely, while we

should assure collision positions to be avoided, we are not

required to recognize each collision free posture as such,

i.e., we can reduce the set of allowed postures to increase

the computation speed. In our implementation each link is

approximated by a set of slightly bigger parallelepipeds, and

the computation is limited to checking the collisions between

those parallelepipeds.

1See http://www.vstone.co.jp and http://www.ode.org

for Vision4G and ODE, respectively.

Fig. 3. Output of the collision prevention system. The figure shows the
motion that would be generated if the collision prevention system were not
enabled and highlights the colliding parts by a red color.

The simulator provides a graphical representation of the

motion generated by the CPG and highlights the parts that

would collide without the intervention of the prevention

collision system, as depicted in Fig. 3. This information can

be exploited by the user to refine the robot movement and

get a motion that does not require any collision prevention.

Utilizing our system a crawling motion was developed by

a single user in 56 minutes by 57 amplitude changes, 39

phase changes, 22 offset changes and 2 frequency changes.

The same user then realized a side-step movement in 29

minutes, using 31 amplitude changes, 4 frequency changes,

18 phase changes and 56 offset changes. Finally an open-loop

walking motion was obtained in 34 minutes. This required 60

amplitude changes, 15 frequency changes, 28 phase changes

and 132 offset changes. Though a single experiment with

a single user cannot provide any statistical evidence, we

can notice that the number of commands per minute highly

increased during the motion development. In detail in the

first experiment 2.14 commands/minute were provided, in

the second the frequency raised to 3.7 commands/minute and

by the third motion the number of command/minute reached

6.9. This suggests that human operators can easily adapt to

the system. We can in fact exclude learning of the robot

dynamics, since the same simulator and robot models were

previously used by the user in plenty of experiments.

Table I reports the final values obtained for the CPG

parameters for the three motions. The final value for ω0

is 3.256 for the crawling, 5.256 for the side step and

1.256 for the walking motion. Figures 4, 5 and 6 report

screenshots of the developed motions. Videos are available

at http://robotics.dei.unipd.it/˜fabiodl/

papers/material/humanoids09/. A further tuning,

for instance to assure perfect movement symmetry or to

maximize the crawling or walking speed could be performed

but this is outside the scope of this paper. We would also

like to stress that the purpose of the experiment is not to

achieve the fastest locomotion speed which is possible but

to validate the feasibility of the approach by developing

a motion that is satisfactory for the user (in terms, for

instance, of similarity to human movements). We therefore

didn’t even measure the walking velocity and ignored

speed comparisons with walking gaits obtained with other

methodologies. For comparison, however, Fig. 7 reports

a crawling movement obtained with a genetic algorithm

(population size 20, 60 generations, real value encoding,

roulette wheel selection, mutation probability 1). The

average speed over one minute was employed as evaluation

function. We can see that the algorithm finds a shape for

the legs that minimizes the friction with the ground, and

uses the head as a support point to proceed forward by

large arm movements. While this solution can lead to a

good speed, it definitely looks awkward to humans. A

difference in the smoothness of the two motions can be

deduced quantitatively by observing the roll and pitch in

the two cases (see Fig 8). The ranges of variation for the

roll and the pitch of the robot are 15.4 and 14.5 degrees

respectively for the motion obtained by direct interaction

with the CPG and 34.7 and 23.9 for the motion optimized

by the genetic algorithm. Obviously the pitch could be

improved by introducing another term into the evaluation

function that penalizes the high pitch and roll excursions,

although deciding the weighting between the two terms is

far from being a trivial task. Furthermore we can imagine

that users desire symmetries in the motion of the limbs.

This would require another evaluation term, whose weight

would be again difficult to guess. The difficulty in choosing

the evaluation function weights highlights the richness and

complexity of the evaluation that human user can provide:

many factors are intuitively weighted, with priorities that are

difficult to express as a weighted combination of evaluation

functions. Indeed, developing systems able to directly

exploit the human user evaluation appears very appealing,

and the proof of concept results presented in this section

seems to suggest that CPG parameter tuning by touch could

represent a way to intuitively realize motions using a very

simple and robust systems.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed the idea of using touch to set the

parameters of a CPG. More precisely we devised a protocol

to map user touches to desired motion modifications and

we designed a CPG network that allows to predict which

parameter change performs the desired movement alteration.

Since online modification of the CPG parameters can easily

cause self collisions we then shortly described the simple

and fast self collision prevention system that was employed

in the realization of the proposed system.

We reported data relative to experiments conducted with a

simulated humanoid robot. Three different motions, namely

a crawling motion, a walking gait, and a side step motion

were developed using the proposed approach, which revealed

to be feasible for the creation of motions from scratch.

Further analysis with a high number of unexperienced users

t=0 s t=0.115 s t=0.43 s

t=2.26 s t=2.670 s t=0.385

t=4.145 s t=4.51 s t=4.855 s

Fig. 4. Execution of the crawling movement.

t=0 ms t= 95 ms t=190 ms t=285 ms

t=385 ms t=539 ms t=629 ms t=719 ms

Fig. 5. Execution of the sidestepping movement.

t=0 s t=1.695 s t=2.7 s t=3.488 s

t=4.135 s t=4.945 s t=5.305 s t=5.605 s

Fig. 6. Execution of the walking movement.

TABLE I

CPG PARAMETER SETTINGS OBTAINED FOR THE THREE MOTIONS.
`

`
`

`
`

`
`

`
Joint

Parameters Crawling Walking Side Step

µj pj φj oj µj pj φj oj µj pj φj oj

1 0 1 0 0 0 1 0 0 0 1 0 0

2 0 1 0 0 0 1 0 0 0 1 0 0

3 0.52 1 0.66 0.78 0.17 1 0.4 -0.7 0.35 1 0 -0.7

4 0.26 1 1.61 -0.52 0 1 0 0.35 0.17 1 1.86 0.17

5 0 1 9.72 0.52 0 1 0 1.22 0 1 0 1.05

6 0.52 1 2.31 0 0 1 0 -1.05 0.35 1 4.4 -1.4

7 0.26 1 2.20 0.78 0.17 1 0.49 -0.17 0 1 0 0

8 0.78 1 5.69 -0.52 0.17 1 0 -0.35 0 1 5.5 0

9 0 1 0 0 0 1 0 0 0 1 0 0

10 0 1 0 0 0 1 0 0 0 1 0 0

11 0 1 5.68 0 0 1 1.64 0 0 1 0 0

12 0 1 0 0 0 1 0 0 0.17 1 0 0

13 0 1 0 0 0 1 0 0 0 1 0 0

14 0 1 0 0 0 1 0 0 0 1 0 0

15 0.26 1 1.28 -1.05 0 1 0 -0.52 0 1 0 0

16 0.26 1 0 1.05 0.17 1 0.31 0.35 0 1 0 0

17 0.26 1 0 0 0 1 0 0.52 0 1 0 0

18 0.26 1 0 0 0 1 0 -0.52 0 1 0 0

19 0 1 0 0 0 1 0 0 0 1 0 0

20 0 1 0 0 0 1 0 0 0 1 0 0

21 0 1 0 0 0 1 0 0 0 1 0 0

22 0 1 0 0 0 1 0 0 0 1 0 0

t=0 s t=2.889 s t=3.754 s

t=4.909 s t=6.269 s t=7.064 s

t=7.494 s t=7.944 s t=8.575 s

Fig. 7. Execution of a crawling movement obtained with a genetic algorithm.

should be performed to provide statistical evidence of the the

advantages of the proposed system over classical approaches.

Future works will involve the implementation of the pro-

posed system on a real robot. We can expect the approach to

be easily applicable for the development of slow motions,

which allow the user to directly interact with the real

hardware. For fast motions, we can simply stop the robot

motion execution, touch the robot to alter the movement and

restart the motion execution. The user would then be required

to wait few cycles to have the CPG stabilize again, observe

the new motion and if necessary apply further modifications.

When applying our technique to the real hardware some

aspects need however to be tackled. First of all, discrim-

ination between user touches, self touches, and pressures

due the environment must be performed to avoid unwanted

modification of the motion. Furthermore, the actual imple-

mentation does not include feedback from the sensors or the

gyroscope. Since we can expect entrainment with the envi-

ronment and therefore a better stability and motion variation,

future research must be aimed at including feedback without

reducing the generality of the approach. Finally, since the

trajectories generated by Hopf oscillators are essentially just

sinusoidal other types of easily predictable oscillators will

be considered to broaden the possible movement repertories.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Derek Tia for the com-

ments on the first draft of the paper.

REFERENCES

[1] K. Doya and S. Yoshizawa, “Adaptive synchronization of neural and
physical oscillators,” vol. 4, pp. 109–116, 1992.

[2] M. A. Lewis, A. H. Fagg, and G. Bekey, “Genetic algorithms for gait
synthesis in a hexapod robot,” Zheng, ed. Recent Trends in Mobile

Robots, pp. 317–331, 1994.

[3] H. Kimura, Y. Fukuoka, Y. Hada, and K. Takase, “Three-dimensional
adaptive dynamic walking of a quadruped - rolling motion feedback
to cpgs controlling pitching motion,” in 2002 IEEE Intl. Conf. on

Robotics and Automation (ICRA 2002), Washington, USA, 2002, pp.
2228–2233.

[4] J. J. Collins and S. A. Richmon, “Hard-wired central pattern generators
for quadrupedal locomotion,” Biological Cybernetics, vol. 71, no. 5,
1994.

8000 8200 8400 8600 8800 9000 9200 9400 9600 9800 10000
−15

−10

−5

0

5

10

15

20

t [ms]

d
e

g
re

e
s

roll

pitch

(a)

1000 2000 3000 4000 5000 6000 7000 8000
−5

0

5

10

15

20

25

30

35

40

t [ms]

d
e

g
re

e
s

roll

pitch

(b)

Fig. 8. Pitch and roll for the crawling motion obtained with the proposed
approach (a) and for the crawling motion obtained by a genetic algorithm
(b).

[5] K.Tsujita, K.Tsuchiya, and A.Onat, “Decentralized autonomous con-
trol of a quadruped locomotion robot,” Artificial life and robotics,
vol. 5, pp. 152–158, 2003.

[6] G. Taga and H. Yamaguchi, Y. Shimizu, “Self-organized control of

bipedal locomotion by neural oscillators in unpredictable environ-
ment,” Biological Cybernetics, vol. 65, pp. 147–159, 1991.

[7] J. Morimoto, G. Endo, J. Nakanishi, S.-H. Hyon, G. Cheng, D. C.
Bentivegna, and C. G. Atkeson, “Modulation of simple sinusoidal
patterns by a coupled oscillator model for biped walking,” in 2006

IEEE Intl. Conf. on Robotics and Automation (ICRA 2006), Orlando,
USA, 2006, pp. 1579–1584.

[8] L. Righetti and A. Ijspeert, “Programmable central pattern generators:
an application to biped locomotion control,” in 2006 IEEE Intl. Conf.

on Robotics and Automation (ICRA 2006), Orlando, USA, 2006, pp.
1585–1590.

[9] A. C. de Pina Filho, M. S. Dutra, and L. S. C. Raptopoulos, “Mod-
eling of a bipedal robot using mutually coupled rayleigh oscillators,”
Biological Cybernetics, vol. 92, no. 1, pp. 1–7, 2005.

[10] A. Crespi, A. Badertscher, A. Guignard, and A. Ijspeert, “Amphibot i:
An amphibious snake-like robot,” Robotics and Autonomous Systems,
vol. 50, no. 4, pp. 163–175, 2005.

[11] H. Inada and K. Ishii, “Behavior generation of bipedal robot using
central pattern generator(cpg) (1st report: Cpg parameters searching
method by genetic algorithm),” in 2003 IEEE/RSJ Intl. Conf. on

Intelligent Robots and Systems(IROS 2003), vol. 3, Las Vegas, USA,
2003, pp. 2179–2184.

[12] Y. Nakamura, T. Mori, M. aki Sato, and S. Ishii, “Reinforcement
learning for a biped robot based on a cpg-actor-critic method,” Neural

Networks, vol. 20, no. 6, 2007.
[13] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng,

“Learning cpg-based biped locomotion with a policy gradient method:
Application to a humanoid robot,” International Journal of Robotics

Research, vol. 27, no. 2, pp. 213–228, 2008.
[14] K. Matsuoka, “Sustained oscillations generated by mutually inhibiting

neurons with adaptation,” Biological Cybernetics, vol. 52, p. 367376,
1985.

[15] P. Roy and Y. Demiris, “Analysis of biped gait patterns generated by
van der pol and rayleigh oscillators under feedback,” in Proc. 3rd Intl.

Symp on Adaptive Motion in Animals and Machines (AMAM 2005),
Ilmenau, Germany, 2005.

[16] A. L. Taylor, G. W. Cottrell, and W. B. Kristan, “Analysis of oscil-
lations in a reciprocally inhibitory network with synaptic depression,”
Neural Computation, vol. 14, pp. 561–581, 2002.

[17] S. Schaal, S. Kotosaka, and D. Sternad, “Nonlinear dynamical systems
as movement primitives,” in IEEE-RAS 1st Intl. Conf. on Humanoid

Robots (Humanoids 2000), Cambridge, USA, 2000, pp. 117–124.
[18] L. Jalics, H. Hemami, and Y. F. Zheng, “Pattern generation using

coupled oscillators for robotic and biorobotic adaptive periodic move-
ment,” in 1997 IEEE Intl. Conf. on Robotics and Automation (ICRA

1997), vol. 1, Albuquerque, USA, 1997, pp. 179–184.
[19] A. Kern and R. Stoop, “Nonlinear dynamics of cochlear information

processing,” Proc. Int. Workshop of Nonlinear Dynamics of Electronic

Systems (NDES-04), Evora, Portugal, pp. 190–193, 2004.
[20] K. J. Pikovsky A., Rosenblum M., Synchronization: A Universal Con-

cept in Nonlinear Science. Cambridge University Press, Cambridge,
2001.

[21] F. Dalla Libera, T. Minato, H. Ishiguro, E. Pagello, and E. Menegatti,
“Developing robot motions by simulated touch sensors,” SIMPAR

2008, LNAI, vol. 5325, pp. 242–253, 2008.

