
A software toolset for quick humanoid motion prototyping

Fabio DallaLibera∗, Takashi Minato†, Hiroshi Ishiguro†‡, Enrico Pagello∗, Emanuele Menegatti∗

∗ Department of Information Engineering (DEI), Faculty of Engineering,

University of Padua, Via Gradenigo 6/a, I-35131 Padova, Italy
† Asada Project, ERATO, Japan Science and Technology Agency,

Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
‡ Departmemt of Systems Innovation, Graduate School of Engineering Science,

Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan

Abstract—When dealing with humanoid robot simulations
researchers must usually choose between two extreme options.
One options consists of very low level libraries like Open
Dynamics Engine (ODE) that provide basic functionalities
the simulation of physical bodies. The other option consist
in very articulated development environments like Microsoft
Robotics Studio or a complete simulation of soccer matches like
SimsPark. A plenty of other open source software are available,
but none of them seems to spread among the researchers.In fact
on the one hand these projects provide many functionalities
not available to the basic physical simulation libraries that
constitute their core. On the other hand, however, the API are
usually complex to use and reaching the knowledge necessary
for modifying their code and adding functionalities requires
much time. Conversely, often simulations are employed for
fast prototyping and testing of new algorithms, so instead of
spending time in learning how to use existing projects most
researches resort to basic libraries like ODE and implement of
layer of abstraction to model humanoid robots. We therefore
propose a simple library that abstracts the level of simulations
of rigid bodies to the simulation of humanoid robots, providing
functionalities for modeling, visualization and basic interaction
as well as a set of tools for the realization of robot motions. In
the development we paid particular care in keeping the code
as simple as possible to allow users to easily understand and
modify the code itself for fast prototyping, without the need
to implement parts of the program usually reimplemented by
every researcher.

I. INTRODUCTION

In the case of mobile robots we notice that some projects

reached a maturity level and are employed by many re-

searchers. For instance Player and Stage [1] nearly constitute

a de facto standard, and their usage allows fast prototyping

of new algorithms without the need of reimplementing

graphical user interfaces, and, for many commercial robots,

software for the robot control.

For humanoid robots, instead, up to date no architecture

seems to have spread among different research groups. Most

of the works are in fact based on custom-made simulators.

Sometimes these simulators are released as open source, as

in the case of Gazebo [2] or SimRobot [3], or are sold as

a commercial product, as for Webots [4] but none of them

has reached the popularity that Player and Stage have in the

mobile robot community.

In many works [5], [6], [7] a library for simulating the dy-

namics of rigid bodies called ODE (Open Dynamics Engine),

which is already the simulation engine of existing simulators

(Gazebo, SimsPark, Webots, etc.), is directly employed. The

success of this library is surely due to its simplicity, in fact in

few hours the complete API description1 can be mastered,

and the examples provided with the code are a very good

starting point of simulations required for fast prototyping

of new algorithms. Conversely projects that provide more

sophisticated simulations (see [8] for a review) are often

not employed by researchers because of the complexity of

their API. For instance Bullet is a very complete library for

simulations. It allows simulations of rigid bodies as well as

soft bodies and that its integration with Blender [9] allows

photorealistic renderings. However realizing even simple

projects is quite difficult, so most of the researches choose

to employ simpler libraries as ODE.

Nonetheless, ODE is designed for generic simulation

of rigid bodies, and most of the researchers reinvent the

wheel by implementing wrapper classes used for modeling

humanoid robots. Expressly usually researchers simulate the

servomotors by an hinge joint and develop a parser that

converts a description of physical dimensions of the robot

to a set of rigid bodies in ODE. A rudimentary library,

called drawstuff and distributed with the ODE examples, is

usually employed for visualization. While the library is very

simple to use, its design usually requires mixing code for

visualization of the objects and simulation steps. Moreover

the library does not implement basic interaction, like picking

objects in the simulated world, which are usually desired

by many researchers. Every time such interaction is needed

the drawstuff is hacked or reimplemented by the various

research groups, spending time on an extension that other

people already developed in their projects.

Our purpose is therefore to implement basic functionalities

required in the for humanoid robot simulations, while keep-

ing the code simple enough to be usable in a short time.

We even aspire at having the code easily understandable

so that researchers are not forced to use it as a black box

but can customize it for their own purposes without diffi-

culties. Our libraries does not therefore aim at substituting

articulated projects, like SimSpark [10], that provide very

advanced functionalities like a path-name space mapping for

1http://www.ode.org/ode-latest-userguide.pdf



management of objects or the simulation of a complete match

between robots. The target of our project is thus similar to the

one of Simbad [11], although we stress the fast prototyping

aspect more than the educational purpose. Furthermore we

preferred to employ C++ instead of Java, since Java Virtual

Machines could not be available on real robots while C++

compilers are available for all the platforms we are interested

in, and we intend to port seamlessly our code between the

simulation environment and the real world. We also preferred

to employ ODE as the simulation physics library, which is

widely used and therefore debugged, instead of employing

custom simulation engines as in Simbad.

However, the code was developed to be as self-contained

as possible and we therefore reduced the number of em-

ployed to a minimum set of widespread libraries. We con-

sidered reducing the dependencies a key point. In fact most

users find very cumbersome to be required to install many

libraries to be able to compile a simulator. Furthermore

in the open source world backward compatibility is not

guaranteed. These incompatibilities could prevent the code

from compiling and could require the user to install on

its system older versions of the libraries or to wait for

code fixes. Section II describes the basic functionalities.

Section III reports some of the ideas underlying its design

and Section IV provides a short list of the works in which

we employed the library. We conclude in Section V by

summarizing the paper content.

II. FUNCTIONALITIES

Our library for robot simulations is actually part of a

bigger set of software tools for robot control, robot simu-

lation and motion development. The main software, called

pplayer, is essentially a server that listens for commands

on a socket and actuates the real robot or a simulated

robot, depending on the compilation directives. We decides to

employ commands that are simple strings in ASCII format.

This slightly reduces the efficiency of the communication,

but allows a lot easier debugging and permits to control the

robot by a simple telnet connection. The commands include

basic functionalities like switching on and off the motors or

reading the robot sensors. Expressly the system provides two

ways of reading the sensor values, polling or a proactive way

in which sensory information is sent as soon as new data are

available. Commands can be launched both in a synchronous

and asynchronous way, i.e. in the synchronous mode the next

command is executed when the previous one has finished

its execution while in the asynchronous mode commands

are executed in parallel. In our implementation, in order

to resemble the Linux bash, every command is launched

in an asynchronous way by simply placing an & after the

command. A ps command, as in the Unix world, allows

to see the commands running in a determinate moment

to ease debugging. Besides the basic sensor reading and

actuators activation, pplayer server provides functionalities

for execution of movements as well. Expressly, most of

the open loop humanoid motion executions are based on

the concept of key-frames: the angles of all the joints are

Fig. 1. A classical slider based interface automatically generated for a
specific robot using our library.

defined for certain time instants, termed keyframes, and

intermediate postures are calculated by interpolation. The

software comprises commands for transferring the keyframes

to the robot, as well for playing the motion with an arbitrary

playing speed, starting time and number of iterations. The

software toolset includes a GUI for the development of the

motions, reported in Fig. 1.

The interface provides all the functions common to clas-

sical commercial editors like VStone’s RobovieMaker2 or

Kondo’s Heart2Heart3. Notice that robot dependent features,

like the sliders that allow modifying the joint angles of a

frame, are generated automatically simply passing an object

that describes the physical structure of the robot. The same

robot description is used for generating an ODE model. The

simulator is multi-robot, and allows easy insertion of objects

in the environment like balls for RoboCup simulation or

more complex environments, as visible in Fig. 2. Since the

simulation completely relies on ODE our toolset does not

present particular difference in terms of simulation speed

and accuracy compared to other ODE based simulators.

Rendering of the simulation can be enabled or disabled.

When rendering is enabled it is possible to interact with the

mouse to move and rotate robots and objects in the simulated

environment. The rendering can be saved as a video simply

setting a filename parameter in the function that enables the

drawing. The simulator simulates a virtual cameras, which

can be easily attached to any part of a robot and virtual touch

sensors. In particular, while ODE provides contact forces

between bodies, our API allows to detect the forces that act

on a single face.

The software toolset is composed by the following com-

ponents

• A library for OS dependent functions, e.g. retrieving the

2http://www.vstone.co.jp
3http://www.kondo-robot.co.jp



Fig. 2. A view of the robot and some objects in the simulated world.

date (in milliseconds) or creating a socket

• Math utilities (matrix computations, generation of ran-

dom numbers with Gaussian distribution, integration of

differential equations, description of graphs, etc.)

• Networking utilities (client sockets, multi-client server

socket, classes for simple job dispatching over the

network, etc.)

• Utility classes for the creation of windows, keyboard

and mouse callbacks, OpenGL renderings and recording

of videos of the generate renderings

• Classes for robot modeling

• Classes for the simulation (Object Oriented wrapper of

ODE) and its visualization

• A graphical interface developed with gtkmm 4, that

allows to develop robot motions

III. DESIGN POLICIES

A. Basic classes

An important element in our system in the Motors su-

perclass. The Motors class represent a set of motors, which

can correspond to real servomotors, simulated ones or more

abstract objects. Among the subclasses of Motors we can

cite

• PrintMotors: saves the postures to a log file

• HubMotors: allows to attach multiple Motors objects to

the HubMotors so that when the HubMotors is rotated

all the attached Motors are rotated simultaneously.

• CollPrevMotors: when a Motors is attached to a Coll-

PrevMotors and the CollPrevMotors object is rotated a

fast collision detection computation is performed at each

rotation, and each motor of the Motors object is rotated

to the maximum extent that does not perform any self-

collision of the robot (the computation is performed as

if the motors were turned one at a time, in an order

specified by the user).

Another basic class underlying our system is the Policy

class. A policy is essentially a parameterized function that

4A C++ wrapper of gtk, http://www.gtkmm.org/

is able to return joint angles for any time instant. For

instance classical key-frame based representation have as

parameters the various frames (with their time) and the

values returned for intermediate times are the interpolation

of the previous and following keyframe (FramePolicy class).

Central Pattern Generators were represented by policies as

well, by introducing variables describing their internal state

(see the HopfPolicy class).

B. Robot modeling

Another set of classes is used for modeling robots. In detail

any robot is modeled by describing its kinematic chain in

terms of SkeletonNode elements. The nodes are attached in

a graph structure, similarly to what is done in OpenScene-

Graph [12]. Parts, described by Part objects, are attached to

the graph to describe the physical encumbrance and mass

distribution of the robot. The Part objects can be described

by a set of Element objects, that provide the description

for basic shapes like spheres or parallelepiped. The Element

objects provide easy customization of the appearance of the

robot, for instance simply specifying the texture filename

allows to have photorealistic renderings. Customization of

the functionalities is also simple. A simple mechanism also

allows to add functionalities to the Element objects. For

instance, simple insertion of a Customization object in an

Element class is used to describe the presence of a touch

sensor on each face of the element. The representation

in terms of SkeletonNode,Part,Element and Customization

objects can be obtained automatically by an XML file,

allowing easy development and debugging of new robot

models. The modeling is completely independent from the

libraries used for simulation, so it would be possible to

easily include the support for other libraries like Bullet. In

particular, once the PAL5 project will be mature enough we

could employ PAL in place of ODE to have a completely

transparent way to change the underlying physics simulation.

The required increase of complexity of the system is under

evaluation. The model in terms of ODE primitive objects

is automatically generated when a SkeletonNode graph is

inserted into a OdeWorld object by the addRobot function.

Multi-robot simulation is therefore trivial. Adding objects

to the world is very simple as well, it is in fact sufficient to

create a StaticObject object and pass it to the addStaticObject

function of the OdeWorld class. During the simulation all

the information regarding the robot can be easily obtained

by functions like getPartRototranslation(double *rotoTra)

that returns in rotoTra the rototranslation matrix of a part,

expressed in the absolute reference frame. Figure 3 depicts

two Vision4G robots in the simulated world and their real

counterpart.

C. Visualization

Creation of windows, to display for instance the rendering

of the simulation from a third point of view or from a robot-

5Physics Abstraction Layer (http://www.adrianboeing.com/
pal/index.html), a project aiming at providing a common interface
to different dynamic engines.



(a) (b)

Fig. 3. (a) A photo of the VStone VisiON 4G humanoid robot, and (b) a rendering of two robots.

mounted camera, is done using GlWinInfo objects. To add

a window it is in fact sufficient to add an element to the

vector of GlWinInfo objects passed to the glDraw function.

Each window allow to chain a series of mouse (MouseInter-

action objects) and keyboard managers (KeyboardInteraction

objects) that are called in sequence to deal with the user

actions.

The library provides callbacks that allow picking and

placing of objects in the simulated 3D world as well as

movements of the camera observing the scene. A keyboard

managers that allow to pause the simulation, restore the robot

position to a standard state, switch the visualization to a

wireframe mode and so forth is provided as well.

Simulations without the scene rendering (to decrease the

computational cost or allow distributed simulations over a

network) can be obtained simply avoiding to invoke the

glDraw function. In the cases when the simulation of the

camera is necessary the library switches to offline rendering

by the usage of the OSMesa library, allowing simulations on

systems that are not running any X-server or equivalent.

D. Command Parsing

As stated in the introduction, the pplayer program opens

a TCP socket and listen for commands. This is done by

instantiation as AsciiServer object, i.e. a multi-client server

that expects non binary commands. The command parsing is

very modular, to allow easy extension of the command set for

fast prototyping. The AsciiServer provides the registerCom-

mandParser function, that enables to add a CommandParser

object to a chain of parsers. Each command parser has to

specify its name, and the commands it manages. It can also

expose some commands to the “shortcut” mode. In fact each

command is assumed to be composed of

1) Z followed by the name of the parser that should

manage it

2) a space

3) an action (i.e. a string)

4) a variable number of parameters

5) the terminating character, in our implementation “;”

When a command is exported to the “shortcut” mode

the manager name does not need to be specified, i.e. the

commands starts directly with the action.

The shortcut mode allows to reduce the length of fre-

quently sent commands, as well to make two managers

handle the same command.In this case the priority can be

specified, as well as whether after using a manager to parse

the command other managers should be invoked as well.

E. Client applications

The interface for motion development, reported in Fig. 1,

as well as most of the software developed for robot control

act as clients of the pplayer server. In detail all the soft-

ware uses the AsciiClient class, that provides functions for

rotating the motors, reading the potentiometers or the touch

sensor values and so forth. The communication is therefore

completely transparent to the client applications, that can op-

erate on the robot simply invoking the AsciiClient functions

without any knowledge of the underlying communication.

F. Dependencies

All the software is written in standard C++. The compi-

lation was tested under g++ versions 3.3, 3.4, 4.2, both in

Linux and Cygwin environments and under Microsoft Visual

Studio 2005. The code makes strong use of the Standard

Template Library (STL) library and compiler dependent

libraries like the Microsoft Foundation Class Library (MFC)

are avoided to assure code portability.

Each module of the system can be enabled or disabled

by compilation directives. This allows to exclude all things

which are not relevant for particular applications, simplifying

the code and reducing the libraries required. In detail the

minimal requirements consist on the pthread library on Linux

and the Winsock2 library on Windows (when the source

is compiled with Visual Studio). Enabling the simulation

requires the ODE library. In particular, the current code



assumes the ODE library to be compiled with the –enable-

double-precision option.

Enabling the rendering requires the GLUT library. If

the possibility to save videos is included, then the Intel

OpenCV library (and the related highgui) must be included.

Furthermore, if offline rendering is desired the OSMesa

library should be installed. When the possibility to parse

models in the XML format is activated by the compilation

directives, the TinyXml6 library is required. The TinyXml is

a minimal C++ XML parser that can be easily integrating

into other programs by simply including its object files at

compilation time. Also in this case, we believe that the

success of the library, compared to more advanced projects,

is given by the simplicity of the code. In fact a simple look

at the example files enables any programmer to start using

the library without problems.

Finally if the graphical user interfaces are compiled the

gtkmm library, a C++ wrapper of Gtk is required.

As explained throughout the paper, the purpose of this

work is to keep things simple so that understanding and

editing is simple as well. The same policy was adopted for

the building, in fact all the code is contained in a single

directory and can be compiled using a single, handmade

Makefile or a Visual Studio project.

IV. EXAMPLES

The libraries presented in the previous work are currently

used by the JEAP RoboCup team at Osaka University. They

were also employed for research on the exploitation of touch

instructions and for a biologically inspired control approach,

as described in the following two sections.

A. Exploitation of touch for robot motion development

In particular, literature presents several examples of em-

ployment of touch in human-robot interaction, dating back

to teaching by playback of robotic arms or interpretation

of tactile gestures [13]. Recently kinesthetic demonstration

has drawn particular attention in the field of humanoid

robots [14], [15]. In these works the robot is just a passive

entity.

Conversely, in our works [16], [17] the robot responds

actively to touch instructions by interpreting the touch mean-

ing and moving its motors accordingly, more similarly to

what happens in human-human communication. We showed

that the intuitiveness of touch can be exploited to allow

inexperienced users to teach motions to humanoid robots.

Precisely in our first set of experiments [16] we used

a simple key-frame based representation for the motion

description and focused our attention on the meaning of

touch. Touch interpretation is in fact not straightforward

at all,since for instance the same touch can correspond

to different meanings depending on the context. Figure 4

provides an example. If the robot is standing, touching the

upper part of one leg could mean that the leg should bend

further backwards. However if the robot is squatting, the

6See http://sourceforge.net/projects/tinyxml/

Fig. 4. An example of the context dependence of the touch meaning.
The user presses the same sensor, but due to the different robot posture the
desired posture modifications (bend the leg and bend the knees, respectively)
differs.

same touch could mean that the robot should move lower to

the ground by bending its knees.

Practically, the user watches the robot executing the mo-

tion, chooses an instant in time when the motion should be

modified and touches the robot to adjust the robot posture at

that time. The robot responds to the pressure on its sensors

by changing its joint angles in accordance to its interpretation

of the touch meaning. When the robot fails to interpret the

meaning of the touch the user teaches by another way of

communication how she or he wanted the robot to move.

Expressly when the robot fails to understand the meaning

of a touch instruction in our implementation the user can

teach the robot the desired movement associated to the touch

either by direct manipulation or by a classical slider based

interface. This can be restated in machine learning terms:

examples of touches and corresponding joint angle changes

given by the user are used by a supervised learning algorithm

to interpret the meaning of touches and online provision of

new examples allows refining the mapping where the robot

fails to interpret the user intention. The system shown good

performances in terms of reduction of motion development

time with respect to classical, slider based editors.

Analyzing the data acquired during the touch interaction

also allowed us to get insights on the way humans use

touch to convey information. For instance, we identified

context elements that influence the meaning of touch and

highlight strong user dependence in the way of teaching. In

particular preliminary results seem to suggest that different

users employ different levels of abstraction when using touch

to communicate their intended posture modification:

• a nearly fixed mapping from a small set of sensors to

the joints; the context has little or no influence;

• a mapping on physical considerations (the joints are

imagined to be “elastic”); in this case, the context, for

instance the position of the ground, becomes crucial;

this strategy strongly resembles the “pin and drag”

model [18] used for computer animation, and the fact

that this approach is taken intuitively by some users

probably confirms the high usability of the pin and drag

interface;

• a very high level representation of the motion, where for

instance just the limb that should be moved is indicated

by touching; at this level of abstraction a single touch

corresponds to a motion primitive.

The program developed makes heavy usage of the library



Fig. 5. A GUI used to program the robot by touch instructions.

presented in the previous sections. In fact the code is a simple

implementation of the algorithm presented in [16] and of

the interface reported in Fig 5, while all the robot control is

performed invoking the AsciiClient methods.

The simplicity of adding a keyboard or mouse callback of

our library allowed to easily simulate the tactile interaction

by mouse clicks on the simulated robot, an interaction often

very difficult to customize with other publicly available

simulators.

Our second series of works [17] switched the focus from

touch interpretation to more advanced forms of represen-

tation of the motion, and expressly we used a specifically

designed Central Pattern Generator [19] (CPG) to represent

the motion as used touch to set its parameters. The pro-

posed system allows to develop periodic motions simply by

touching the robot, without the support of any other GUI

or any alternative protocol. The code consists essentially

of a subclass of the Policy class that implements a CPG

we designed and of a subclass that manages the mouse

callbacks(aMouseInteraction subclass) and changes the CPG

parameters.

We shown the feasibility of the approach by developing

from scratch three periodic motions, namely crawling, side

stepping and walking, in very short times, respectively 56

minutes, 29 minutes and 34 minutes. Videos are available

at http://robotics.dei.unipd.it/˜fabiodl/

papers/material/humanoids09touch/

B. Biological fluctuations for robot control

Often simple living beings like bacteria present a highly

adaptive and robust behavior despite their structural sim-

plicity. For instance bacteria are able to sense changes in

the concentration of nutrients and direct their movements

toward the food molecules while escaping from poisoning

substances without any complex planning strategy.

In detail Escherichia Coli [20] (in the following referred as

E. Coli) uses a biased random walk for its movement. These

bacteria have only two way of moving, rotating clockwise or

counter-clockwise. When they rotate counter-clockwise the

rotation aligns their flagella into a single rotating bundle and

they swim in a straight line. Conversely clockwise rotations

break the flagella bundle apart and the bacteria tumble in

place. The bacteria cannot therefore choose the direction

of their movement, but just keep alternating clockwise and

counterclockwise rotations. In absence of chemical gradi-

ents the length of the straight line paths (counter-clockwise

rotations) is independent of the direction, and the bacteria

essentially perform a random walk. In case of an increasing

gradient of attractants (like food) the bacteria instead reduce

the number of tumbles, i.e. proceed in the same direction for

a longer time and the overall movement is directed toward

increasing concentrations of the attractant. The movement,

when observed at a macroscopic level, is more and more

deterministic the better the conditions are and conversely

more and more stochastic the worse the state is.

This is in perfect analogy with other phenomena observed

in nature. For instance cells can adapt to environmental

changes by altering their pattern of gene expressions and

metabolic flux distribution. These adaptive responses are usu-

ally explained by the signal transduction mechanisms, a sort

of a pre-wired logic circuit that modifies the gene expression

depending in the environmental condition. However not all

the adaptations can be explained i terms of transduction

mechanisms and in [21] it was shown that cells can select

states most favorable for their survival among a large number

of other possible states simply because the cells that grow

more (are more adapt to the environment) present a less

stochastic behavior.

The relationship can be formalized under the very general

framework of biological fluctuations [22], [23]. Expressly

assuming to have a continuous time system the model of

biological fluctuations is given by the equation

ẋ = Af(x) + η. (1)

where x ∈ R
m is the control signal or represents the value

of some parameter that determine the behavior (of the animal,

or, in our case, of the robot), f : R
m

→ R
m is a deterministic

function of the current value of x, η is a random variable and

A : R
n
→ R is a function, called “activity”, that indicates

the fitness, or “quality” of a particular state of the living

being/robot. Intuitively when the state is getting better the

value of A increases and the control actions becomes mainly

deterministic, while when the conditions worsen the control

becomes more and more stochastic.

If the states are discrete the same effect can be obtained

using a Markow chain and assuming the transition proba-

bility from a state to itself as an increasing function of the

state fitness. Expressly we conducted an experiment where

we controlled each joint of a mobile robot by sine waves,

and define the (crawling) velocity as the fitness of a state.

The frequency, amplitude and an offset values along which

the motors oscillate were set to a fixed value, while the

phases (timing differences) between the motors were varied

to obtain different behaviors. In detail we prepared N = 8
states corresponding to 8 different phase settings, and assume

transition probability from a state to itself equal to a, and
from to a state to another equal to (1 − a)/(N − 1), with
a = σ (v − v0), where σ is the sigmoid function, v is the

robot velocity and v0 is a constant. We verified that with

this simple setting the robot is able to find the phase setting

most suitable to crawl and to change it when the performance

decrease because, for instance, an obstacle prevents the robot

movement. Also in this case the code is very reduced, and



is strongly based on calls to the AsciiClient class methods.

The whole program consist in fact of a single file of few

hundreds of line of code.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a set of libraries for common

humanoid robot control, simulation and development of mo-

tions. The main design principle underlying the development

is to keep the code as reduced as possible, and keep the API

as simple as possible, as well as to limit the dependencies to

a small set of very diffused libraries. The purpose is therefore

not to substitute more complete and well structured projects

like SimSpark, Webots, Gazebo, SimRobot, USARSim [24].

The target of our code is fast prototyping of algorithms and

provides a set of utilities developed with humanoid robots in

mind. In this paper we briefly outlined the design principles

underlying the software development and presented some

works that were realized employing the described code. The

library is currently being commented, and will be released as

an open-source project as soon as the documentation process

is terminated. People interested in the alpha release currently

available can contact directly the first author of this paper.

Future works involve further debugging of the code, as well

as the modeling of commercial humanoid robots. Currently

we developed a model of VStone’s VisiON 4G and a model

of Kondo’s KHR-2HV is being developed.

REFERENCES

[1] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage
project:tools for multi-robot and distributed sensor systems,” in Pro-

ceedings of the 11th International Conference on Advanced Robotics
(ICAR 2003), Coimbra,Portugal, 2003, pp. 317–323.

[2] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International

Conference on Intelligent Robots and Systems(IROS 2004), Sendai,
Japan, 2004, pp. 2149–2154.

[3] T. Laue and T. R ofer, “Simrobot: Development and applications,”
in Workshop Proceedings of SIMPAR 2008 International Conference

on Simulatation, Modeling and Programming for Autonomous Robots,
Venice,Italy, 2008, pp. 143–150.

[4] O. Michel, “Webots: Symbiosis between virtual and real mobile
robots,” in VW ’98: Proceedings of the First International Conference

on Virtual Worlds. London, UK: Springer-Verlag, 1998, pp. 254–263.
[5] K. Wolff and P. Nordin, “Learning biped locomotion from first

principles on a simulated humanoid robot using linear genetic pro-
gramming.” in in Proc. Genetic and Evolutionary Computational

Conference (GECCO-2003. SpringerVerlag, 2003, pp. 12–16.
[6] J. L. Lima, J. C. Gonalves, P. J. Costa, and A. P. Moreira, “Realistic

humanoid robot simulation with an optimized controller: A power
consumption minimization approach,” Coimbra, Portugal, pp. 1242–
1248.

[7] N. Sugiura and M. Takahashi, “Development of a humanoid robot
simulator and walking motion analysis,” pp. 151–158.

[8] A. Boeing and T. Bräunl, “Evaluation of real-time physics simulation
systems,” in GRAPHITE ’07: Proceedings of the 5th international con-

ference on Computer graphics and interactive techniques in Australia
and Southeast Asia. New York, NY, USA: ACM, 2007, pp. 281–288.

[9] S. Wouters and C. Wartmann, The Official Blender 2.0 Guide. Premier
Press, Incorporated, 2001.

[10] O. Obst and M. Rollmann, “Spark - a generic simulator for physical
multi-agent simulations,” in Computer Systems Science and Engineer-

ing, 2004.
[11] L. Hugues and N. Bredeche, “Simbad : an Autonomous Robot

Simulation Package for Education and Research,” in Simulation of

Adaptive Behavior (SAB 2006), Rome Italy, 2006, pp. pp.831–842.
[Online]. Available: http://hal.inria.fr/inria-00116929/en/

[12] D. Burns and R. Osfield, “Open scene graph a: Introduction, b:
Examples and applications,” in VR ’04: Proceedings of the IEEE

Virtual Reality 2004. Washington, DC, USA: IEEE Computer Society,
2004, p. 265.

[13] R. Voyles and P. Khosla, “Tactile gestures for human/robot inter-
action,” in 1995 IEEE/RSJ International Conference on Intelligent

Robots and Systems(IROS 1995), Pittsburg, USA, 1995, pp. 7–13.
[14] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system

modulation for robot learning via kinesthetic demonstrations,” IEEE

Trans. on Robotics, vol. 24, no. 6, pp. 1463–1467, 2008.
[15] H. B. Amor, E. Berger, D. Vogt, and B. Jung, “Kinesthetic boot-

strapping: Teaching motor skills to humanoid robots through physical
interaction,” in KI, 2009, pp. 492–499.

[16] F. DallaLibera, T. Minato, I. Fasel, H. Ishiguro, E. Pagello, and
E. Menegatti, “A new paradigm of humanoid robot motion pro-
gramming based on touch interpretation,” Robotics and Autonomous
Systems, vol. 57, no. 8, pp. 846–859, 2008.

[17] F. D. Libera, T. Minato, H. Ishiguro, and E. Menegatti, “Direct
programming of a central pattern generator for periodic motions by
touching,” 2009 (to Appear).

[18] K. Yamane and Y. Nakamura, “Natural motion animation through
constraining and deconstraining at will,” IEEE Transactions on vi-

sualization and computer graphics, vol. 9, pp. 352–360, 2003.
[19] G. Taga and H. Yamaguchi, Y. Shimizu, “Self-organized control of

bipedal locomotion by neural oscillators in unpredictable environ-
ment,” Biological Cybernetics, vol. 65, pp. 147–159, 1991.

[20] J. Adler, “The sensing of chemicals by bacteria,” Scientific American,
vol. 234, pp. 40–47, 1976.

[21] C. Furusawa, K. Kaneko, and H. Shimizu, “A noise-driven mechanism
for adaptive growth rate regulation,” in BIONETICS ’08: Proceedings
of the 3rd International Conference on Bio-Inspired Models of Net-

work, Information and Computing Sytems. ICST, Brussels, Belgium,
Belgium: ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2008, pp. 1–5.

[22] I. Fukuyori, Y. M. Yutaka Nakamura, and H. Ishiguro, “Flexible
control mechanism for multi-dof robotic arm based on biological fluc-
tuation,” in 10th International Conference on Simulation of Adaptive
Behaviour, SAB 2008, Osaka,Japan, 2008, pp. 22–31.

[23] T. Yanagida, M. Ueda, T. Murata, S. Esaki, and Y. Ishii, “Brownian
motion, fluctuation and life.” Biosystems, vol. 88, pp. 228–242, 2006.

[24] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper,
“Usarsim: a robot simulator for research and education,” in 2007 IEEE

International Conference on Robotics and Automation (ICRA 2007),
Roma, Italy, 2007, pp. 1400–1405.


