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Summary 
Literature presents several examples of employment of touch in human-robot interaction, dating back to 
teaching by playback of robotic arms or interpretation of tactile gestures 1 . Recently kinesthetic 
demonstration has drawn particular attention in the field of humanoid robots2. In these works the robot is 
just a passive entity. Conversely, in our works3,4 the robot responds actively to touch instructions by 
interpreting the touch meaning and moving its motors accordingly, more similarly to what happens in 
human-human communication.  
We showed that the intuitiveness of touch can be exploited to allow inexperienced users to teach motions 
to humanoid robots. Precisely in our first works3 we used a simple key-frame based representation for the 
motion description and focused our attention on the meaning of touch. Practically, the user watches the 
robot executing the motion, chooses an instant in time when the motion should be modified and touches 
the robot to adjust the robot posture at that time. The robot responds to the pressure on its sensors by 
changing its joint angles in accordance to its interpretation of the touch meaning. When the robot fails to 
interpret the meaning of the touch the user teaches by another way of communication how she or he 
wanted the robot to move. Expressly when the robot fails to understand the meaning of a touch instruction 
in our implementation the user can teach the robot the desired movement associated to the touch either by 
direct manipulation or by a classical slider based interface. This can be restated in machine learning 
terms: examples of touches and corresponding joint angle changes given by the user are used by a 
supervised learning algorithm to interpret the meaning of touches and online provision of new examples 
allows refining the mapping where the robot fails to interpret the user intention. 
The system shown good performances in terms of reduction of motion development time with respect to 
classical, slider based editors. Analyzing the data acquired during the touch interaction also allowed us to 
get insights on the way humans use touch to convey information. For instance, we identified context 
elements that influence the meaning of touch and highlight strong user dependence in the way of teaching. 
In particular preliminary results seem to suggest that different users employ different levels of abstraction 
when using touch to communicate their intended posture modification. 
Our second series of works4 switched the focus from touch interpretation to more advanced forms of 
representation of the motion, and expressly we used a specifically designed Central Pattern Generator 
(CPG) to represent the motion and used touch to set its parameters. The developed system allows to 
develop periodic motions simply by touching the robot, without the support of any other GUI or any 
alternative protocol. We showed the feasibility of the approach by developing from scratch in a short time 
three periodic motions, namely walking, side stepping and crawling. 
Videos are available at http://robotics.dei.unipd.it/~fabiodl/video.php?videoGroup=humanoids09tactile
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Motivation 

Humanoid robots are becoming a more and more easily available entertainment device on the market, at a 
lower and lower cost. In most of the interfaces for their programming the target position of each of the 
servomotors is specified by the user using a slider5 for some time instants, normally called keyframes. 
The robot control board then interpolates the keyframes to generate the motion. The motion development
process therefore requires the user to identify, for each posture, which are the parts of the robot that 
should be moved, realize which are the joints, along the kinematic chain, that cause the desired 
movements, and determine, for each of the joints, the right rotation direction and the appropriate rotation 
amount.  Although other techniques, such as motion capture and retargeting6, can be employed for motion 
development, these methods are still cumbersome, and require the use of expensive devices. 
Touch is an intuitive method of communication. It is employed in human-human interaction, for instance 
by sports coaches or dance instructors7  to correct a learner's posture or motion. Tactile interaction 
therefore appears particularly appealing as an intuitive 
method to teach to humanoid robots as well. 
Although very intuitive for humans, touch interpretation is 
not straightforward since similar touches could have 
different meanings depending on the context. For instance, 
if the robot is standing, touching the upper part of one leg 
could mean that the leg should bend further backwards. 
However, if the robot is squatting, the same touch could 
mean that the robot should move lower to the ground by 
bending its knees (see Fig. 1).  

Results 

We devised an algorithm for the interpretation of the touch meaning based on k-Nearest Neighbor with a 
specifically devised weighting schema.  
This algorithm takes as input a touch pattern (and its context, consisting in the robot’s posture, its 
orientation in the space and the velocity of its center of 
mass) and gives as output the expected desired joint angle 
change. As briefly reported in the summary, the algorithm 
is trained using examples of the mapping collected during 
the motion development. 
Analyzing data collected during the experiments, we 
showed that the touch interpretation cannot be explained by 
linear models. In particular employing two datasets, 
collected during the development of two different motions 
(walking and jumping) we showed that linear models tend 
to overfit the data. Table 1 provides the comparison of the 
errors in the prediction of the desired angle change for the two algorithms under different settings of the 
training and test datasets.  
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 Fig. 1 Example of the context dependence of 
the touch  instruction meaning 

Average relative errorTraining
dataset 

Test  
dataset linear 

regression
K-NN 

JUMP JUMP 0.1872 0.1863 
JUMP WALK 715.0779 1.0325 
WALK JUMP 2.6658 0.9569 
WALK WALK 3.98E-06 0.1022 

 Table 1 Errors of the k-NN algorithm and 
linear regression. 



We then divided the collected examples in classes, where each class indicates whether in the example 
output each motor was rotated in clockwise direction, 
counterclockwise direction or was not moved. We ran 
Quinlan’s C4.5 algorithm and discovered that the features of 
the context that appear in the highest level of the decision 
tree, i.e. the features that more strongly influence the 
meaning of touch are given by the rotation of the joints near 
the torso. This makes sense, since those joints determine the 
overall positions of the limbs. Table 2 reports for each joint 
the levels at which its angle appears in the conditions of the 
decision tree generated by the C4.5 algorithm (the joint IDs 
are visible in Fig.2). 
The jumping motion was developed both with the proposed, 
touch based system and with a classical slider based editor. 
As a result, the same user realized the motion in 17 minutes 
with our system while using a classical, slider based interface 
he spent over 40 minutes. 
We then observed that the meaning associated to touch is 
very user dependant, and in detail that different human 
operators use a different level of abstraction when providing 
their touch instructions. In an experiment with six subjects 
we noticed four types of teaching: 
1. a nearly fixed mapping from a small set of sensors to the 

joints; the context has little or no influence (users B and 
D); 

2. a more free mapping, that uses several sensors to move 
the same joint (users C and F) 

3. a mapping based on physical considerations, i.e. the 
joints are imagined to be elastic; in this case, the context, 
for instance the position of the ground, becomes crucial 
(user A)  

4. a very high level representation of the motion, where for 
instance just the limb that should be moved is indicated 
by touching (user E) 

These qualitative observations, obtained by direct inspection 
of the mapping between pressed sensors and moved joints, 
seem to be supported by quantitative results. 
More precisely, we trained the K-NN algorithm with the data 
of a single user, and calculated the expected outputs (joint 
angle changes) on the touch patterns provided by all the 
other users. We then calculated the average correlation 
between the outputs given the same input for each couple of 
users, and converted this correlation to a distance (see 3 for 
the details). Finally we applied the multidimensional scaling 
algorithm and obtained a 2D representation of the distances 
between the users, as reported in Fig. 3. We notice that the 
distances between the users seem to reflect our qualitative 
observations. 
We then studied the possibility to change the whole 
movement with a single touch, instead of working with a 
movement as a sequence of postures.   
More concretely we employed a Central Pattern Generator 
(CPG) to control the robot and showed that touch can be a 
powerful method to develop motions of CPG driven robots. 

 Fig. 2 Employed robot and its degrees of 
freedom.

Dataset Joint 
JUMP WALK

1 2  
2 17,21,22 9 
3 3 3 
4  5,11 
6  2 
7 20  
8 5,8,19  
9 1 3 
11  10 
12 0 1 
14  3 
15  2,8,10 
16 5 3,4 

  
Table 2 Levels at which each joint appear in 

the branchings of the decision trees 
constructed for the two datasets. 

Fig. 3 2D representation of the distances 
between the users obtained by 
multidimensional scaling.



CPGs behavior depends on a huge number of parameters. Setting them by automatic search algorithms 
such as genetic algorithms (GA) has the 
drawbacks that the user has little control over 
the resulting motions, since it is often difficult 
to formulate criteria like human-likeness in 
terms of an evaluation function. Conversely 
hand-tuning is unintuitive, error-prone and 
time-consuming. We identified touch as a way 
to give the user full control over the resultant 
motion while keeping the user effort reduced.  
In order to employ touch, predictability of the 
CPG behavior is fundamental; in fact we 
expect the user to require that similar touches 
lead to similar effects. We therefore designed a 
very predictable network of Hopf oscillators, 
and devised a protocol that maps touch 
patterns to CPG parameter changes, i.e. to 
changes in the movement.  
In the experiments we used a simulator, which 
allows to easily discriminate between the 
touches due to gravity and the user touches, 
realized by mouse clicks in our system. 
Employing a simulator also permitted a direct 
comparison between setting the parameters by 
a genetic algorithm and setting them by touch. 
In particular we developed a crawling motion 
both by touching and by a genetic algorithm 
with evaluation function given by the average 
robot velocity in the direction of its head. 
Figures 4 and 5 provide a qualitative 
comparison of the two motions.  
Unless we carefully devise a very complicated 
evaluation function that takes care of many 
elements opportunely weighted it is difficult to 
obtain natural looking motions with an 
automatic parameter search, as can be easily seen in Fig. 5.  In fact when humans develop motions by 
touching they implicitly consider a high number of criteria. This can often be seen afterwards analyzing 
the resulting motions. For instance the ranges of variation for the roll and the pitch of the robot are 15.4 
and 14.5 degrees respectively for the motion obtained by tactile interaction and 34.7 and 23.9 for the 
motion optimized by the genetic algorithm. 

Fig. 4 Crawling motion developed using only touch 
interaction.

Fig. 5 Crawling motion developed using a genetic 
algorithm 

Fig. 5 Pitch and roll for the motion developed by touch (left) and for the one obtained by a GA (right).


