
ROSlink:
Interfacing legacy systems with ROS

Fabio Dalla Libera
JSPS Research Fellow at Osaka University

Osaka, Japan
Email: fabio.dl@is.sys.es.osaka-u.ac.jp

Hiroshi Ishiguro
Osaka University

Osaka, Japan
Email: ishiguro@sys.es.osaka-u.ac.jp

Abstract—This paper presents ROSlink, an open source project
that aims at easing the integration of legacy systems with ROS
(Robot Operating System). Its design principles provide a set of
unique features that make it appealing for the interconnection
of ROS with systems where ROS itself cannot be installed. First,
ROSlink requires very limited changes to the legacy system. The
project is self contained, bringing in no dependencies, which
may be difficult to satisfy in a legacy system. Furthermore,
with ROSlink any data type already in use in the legacy system
can be employed for the communication of topics and service
requests and responses. ROSlink allows run-time rerouting of the
communication between the legacy system and ROS. Moreover,
it empowers the legacy code with the ROS name remapping
system, without enforcing any constraint on the command line
parameters of legacy programs. Finally, by simply using a set of
API that closely follow the ROS programming interface, ROSlink
simplifies any successive porting of the code to a real ROS system.
In this paper, the main design choices of ROSlink are discussed.
A list of practical applications and tests where ROSlink was
employed, as well as a short discussion on the project’s future
directions are then given.

I. INTRODUCTION

Software running on robots is often very complex. A high
variety of algorithms, from joint level control to AI reasoning
methods must cooperate to achieve the desired goals. The
complexity of this kind of control can be managed only by
organizing the code as a set of subsystems, possibly operating
at different layers, that interact with each other.

Over the years various middleware for the communication
of these subsystems were proposed. Among the most well-
known, we can certainly cite Player [1], URBI [2], YARP [3],
OpenRTM [4], Miro [5], OpenRdk [6], Orca [7], MARIE [8],
CARMEN [9], OPRoS [10], LCM [11] and the JAUS based
SDKs such as OpenJAUS [12].

Recently, a new project, ROS [13], is gaining stronger
and stronger attention in the robotics field. The simplicity of
its API, good documentation and the support by an active
community are just some of the features that makes it the
middleware adopted for the integration of many new robotic
projects. Launched by Willow Garage in 2007, ROS is cur-
rently officially supported by 28 robots, features over 2000
packages and has a wiki of over 14000 pages with over
2000 users. The scope of the software packages available is
very wide, and ranges from hardware peripheral drivers to
point cloud processing [14], from inverse kinematic libraries

to Human Robot Interaction [15].
Reuse of this huge amount of publicly available software

through ROS is very appealing for speeding up the develop-
ment of robotic systems. It allows researcher to focus only on
the parts of the systems directly correlated with their research.
Problems arise, though, when it becomes necessary to deal
with legacy systems, for which ROS is not available. Currently
ROS supports only Ubuntu, and in an experimental way, other
five Linux distributions (Debian, Fedora, Gentoo, OpenSuse
and Arch Linux), OS X 10.5 or higher and Windows XP
SP3 or higher. However, roboticists may be tied to use other,
unsupported platforms for many reason. Examples are the
availability of the driver of a peripheral only for an old OS,
or the necessity of using proprietary programs compiled for
a particular system and available only in binary form. Hard
realtime requirements may impose the use of an unsupported,
real-time operating system like QNX. Hardware constraints,
such as very limited on-board flash memory mounted in an
embedded device, may prevent the installation of a supported
operating systems as well. Finally, there may be simply the
desire of modifying working and debugged systems as little
as possible.

The work presented in this paper aims at coping with all
these cases in which constraints imposed by a legacy system
clash with the need of interfacing legacy code with ROS, for
making a legacy system available to new ROS packages, or
for equipping a legacy system with functionalities provided
by ROS packages. Related works and the design principles
adopted will be described in the next section. Details of the
actual solutions employed for achieving these goals will then
be given. Successively, use cases will be briefly introduced.
Finally, future work will be discussed.

II. DESIGN PRINCIPLES

ROSlink, the project presented in this paper, aims at allow-
ing legacy software (or software running or legacy systems)
to interact with ROS, without actually having to install ROS
on the machine running the legacy code. During the software
development, the following two fundamental goals were set:

1) Minimization of the API to be learned by the users.
2) Minimization of the changes required to the legacy sys-

tem.

In order to achieve these objectives, it was decided to
provide a C++ implementation that exposes to the legacy
system a set of API essentially identical to roscpp, the C++
implementation of ROS. This allows users familiar with roscpp
to start using ROSlink with minimal effort. In order to require
as few software installations and as little code modification
as possible, the code was split into two components. The
first, named helium, is a lightweight (hence the name), self
contained C++ library intended to be used by the legacy code.
The second component, named roslink, is a library, distributed
as a ROS package and depending just on ROS, that is used
to perform marshalling between ROS and the legacy code.
In the current implementation the two components commu-
nicate through TCP/IP, however switching to other types of
communication, like I2C, could be achieved by changing the
implementation of few classes.

This subdivision into two components is similar to the one
taken by rosbridge [16]. Indeed, rosbridge opens a TCP/IP
server, which accepts commands, formatted using the JSON
syntax, to subscribe/publish to ROS topics and to invoke ROS
services. Clients can therefore interact with ROS through a
TCP/IP (or WebSocket) connection by sending JSON objects
having the fields specified by the rosbridge protocol. The
original motivations of the two projects, however, reflect in
different (and complementary) features. More in detail, ros-
bridge is intended for allowing non-ROS clients, like javascript
in web-pages, to access existing ROS code. ROSlink, instead,
aims at allowing the reuse of legacy systems in new projects.
As a result, for instance, rosbridge does not allow clients to
provide ROS services (but only to invoke them). Conversely,
allowing ROS nodes to call services provided by the legacy
code was set as one of the main goals since the start of
ROSlink development. Similarly, while rosbridge delegates
to its users the conversion of their data types into JSON
messages, rosbridge focuses in providing its users with a set
of simple API for speeding up the development process.

Along these lines, for achieving a fast and easy integration
of legacy systems into ROS, the following distinctive design
principles were set for ROSlink:
(A) minimal set of dependencies for the helium component
(B) compatibility between helium API and roscpp API
(C) ability of dynamically creating ROS publishers, sub-

scribers, service servers and clients
(D) robustness to run-time changes of the network topology
(E) complete support of the ROS name remapping system
(F) marshalling between ROS and legacy code completely

isolated from the legacy code
In the following, details for each of these design choices

will be briefly provided.

A. Dependencies

The library to be linked with legacy code, helium, is
self contained, apart from networking and multithreading.
Networking is implemented by using Berkeley sockets when
helium is compiled on POSIX systems, and by using the
Winsock API when it is compiled on Windows. Similarly,

multithreading is achieved using Pthreads on POSIX systems
and native Windows threads when compiled on Windows. The
OS-dependent code is isolated in few classes, and can be
reimplemented in case neither Pthreads nor Windows API can
be used. The choice of not using other libraries that increase
code portability, and in particular Boost, comes from the desire
of completely avoiding possible incompatibilities between the
current Boost API and older versions that may be used by the
legacy code. Similarly, the library comes with a cmake file,
but manually written Visual Studio Projects, and Makefiles for
Linux and QNX are provided for the systems in which cmake
is not available. Users can also choose not to compile the code
as a library, but simply to compile the helium code together
with theirs.

B. API

The API exposed to the legacy system mirror as closely
as possible the roscpp API. Each of the ROS objects,
like ros::NodeHandle or ros::Publisher, find their counter-
part in helium, in this case as legacy::NodeHandle and
legacy::Publisher, with member functions that mirror their
ROS equivalent. Peculiarities of ROS, like the possibility
of publishing to a single subscriber in a SubscriberStatus-
Callback, are provided. When ROS throws an exception (for
instance, because an invalid pathname is given in the construc-
tion of a NodeHandle) an exception is thrown in the legacy
code as well. Setting, reading and searching parameters can
be done in helium in exactly the same way it can be done in
ROS. This brings a great advantage: in case an unsupported
OS becomes supported by ROS at some point in time, it
is sufficient to replace the legacy namespace with the ros
namespace to use the native support.

To allow the communication with roslink, the API intro-
duces a new object, called legacy::Link. Each legacy::Link
object is identified by a name specified through its con-
structor. When a ROS node instantiates a ros::Link object
(provided by the roslink package) with the same name, the
communication is established. Conceptually, operating on a
legacy::NodeHandle constructed in the legacy code is the
same as operating on a ros::NodeHandle constructed in the
node where the ros::Link object is declared. Services exported
by the legacy code using the advertiseService member of a
legacy::NodeHandle are seen by ROS as services of the ROS
node where the ros::Link object is created. As will become
clear in the next section, a single legacy program can declare
multiple legacy::Link objects. For this reason, the link to be
used by each legacy::NodeHandle (and thus, conceptually, the
ROS node it belongs to), can be specified by passing a ref-
erence to the legacy::Link object to the legacy::NodeHandle’s
constructor.

C. Dynamic creation and destruction

In ROS, when a ros::Service object is initialized, the service
is advertised in the system, and when the last copy of that
ros::Service is destructed, the service is automatically unadver-
tised. The same philosophy, valid for publishers, subscribers

and clients, is maintained in helium. In particular, even if
a ROS node containing a ros::Link aimed at exporting a
legacy service is up and running, the corresponding ROS ser-
vice becomes available in ROS only when the corresponding
legacy::Service is advertised. In the same way, the service is
unadvertised as soon as the last copy of the legacy::Service is
destroyed, or when the connection between the legacy::Link
and the ros::Link goes down.

D. Link network topology

Data exchange between legacy systems and ROS takes place
through the communication between the helium library and
ROS nodes that, using the roslink library, expose the legacy
system functionalities to ROS and vice versa. More precisely,
the communication takes place between a legacy::Link object
declared in the legacy code and a ros::Link object with the
same name created in a ROS node. ROSlink imposes no
instantiation order, i.e. it is possible to launch either the ROS
node or the legacy code first. The two components do not need
to know the location (hostname and TCP port) of the paired
entity either. Indeed, a program provided with helium, called
lmaster, acts as a DNS server, in the same way roscore allows
nodes to communicate without knowing each other’s hostname
and port beforehand. Specifically, when a legacy::Link or
ros::Link objest is created, it automatically registers itself
to the lmaster server, and when the paired entity becomes
available, the object is notified the hostname and TCP port
to connect to, so that a direct connection between the two
objects can be established. This kind of approach allows a
very flexible dynamic reconfiguration of the network topology.
Fig. 1 provides example of four possible scenarios:
(a) Each legacy program uses an independent legacy::Link

to connect to a corresponding ROS node that declares a
single ros::Link.

(b) All legacy programs use the same roslink, provided by a
ROS node responsible for all the legacy nodes.

(c) A legacy program uses multiple links, to provide concep-
tually different services in different ROS nodes.

(d) A mixed approach, where many simple legacy services
are mapped to the same ROS node but a single legacy
program, source of a high bandwidth data stream, is
connected to a ROS node running on a different machine.

Thanks to the dynamic binding approach provided by
lmaster, the configuration can be switched at run-time, for
instance for balancing the load between multiple machines or
for compensating a temporary failure of a machine.

E. Namespace remapping

ROS offers a very powerful system for remapping the names
of topics and services. This allows “pushing down” a complete
namespace, and thus easily integrate multiple systems from
heterogeneous sources without name conflicts. Additionally,
names of nodes, topic and parameters can be remapped from
the command line or launch files to execute the same code
under multiple configurations. Additional remappings can be
specified in the creation of a NodeHandle object, allowing

the remapping of the names declared in the subtree rooted at
that particular NodeHandle. Finally, a particular namespace,
called private namespace, is created for each node. The
parameters in this namespace can be assigned very easily
from the command line. All these features are maintained
in ROSlink. In particular, remappings can be specified in the
creation of legacy::NodeHandle objects. Furthermore, for the
model introduced by ROSlink, nodes created in legacy code
conceptually lie in the ROS node containing the corresponding
ros::Link. For this reason, when a ROS node containing a
ros::Link is launched with remapping arguments, the same
remappings are applied to the legacy code linked through
the corresponding legacy::Link. This allows ROSlink users
to easily remap how the legacy system is seen from ROS
(and the other way around) without restarting the legacy code.
Furthermore, it enables remapping operations without passing
command line arguments to the legacy code, which may parse
the command line arguments in a way that is incompatible
with the ROS remappings and parameter assignments.

F. Marshalling

The data types of topics and service requests and responses
are usually defined in ROS using a very intuitive definition
language. Scripts are then used to generate files for each
particular programming language, header files in the C++ case.
The generated code provides serialization and deserialization
methods, which enable the actual transfer of the data over
the network. When interfacing legacy code with ROS, one
could generate the header files on a ROS equipped system, and
include them in the legacy code. It would be then be necessary
to replace the original data types with the ones generated
by ROS, or to insert mapping functions between the original
legacy data types and the ones generated by ROS when using
ROS methods. Another option would be to manually equip
the legacy data types with the serialization and deserialization
methods required by ROS.

Following the philosophy of leaving the legacy code as
untouched as possible, however, ROSlink takes an alternative
approach. Topics and service messages used by the objects
of helium (legacy::Publisher, legacy::Subscriber, etc.) accept
any data type, hence legacy data types can be used directly.
Serialization and deserialization between a helium::Link and
the corresponding ros::Link of all data types default to the data
type’s << and >> operators, but in case another serialization
is desired, it is sufficient to specialize the helium::write and
helium::read functions for that particular data type.

The conversion between the legacy data types and the ROS
types is instead performed at the ROS node defining the
ros::Link. Listings 1 and 2 provide a toy example. The legacy
code (listing 1) makes its addInts function available as a
service over the legacy::Link. The function accepts a pair of
ints and returns their sum as an int. These types are mapped,
respectively, to the request and the response of the service
description reported in listing 3. As shown in listing 2, the
mapping is specified using the declareServiceServer member
function of the legacy::Bridge object. The first two template

<<device>>
Legacy Device X

<<device>>
ROS PC X

Legacy Program 1 ROS Node 1

Legacy Program 2

<<component>>
ros::Link A

<<component>>
legacy::Link A

<<device>>
Legacy Device Y

Legacy Program 3

<<component>>
legacy::Link B

<<component>>
legacy::Link C

ROS Node 2

<<component>>
ros::Link B

ROS Node 3

<<component>>
ros::Link C

roslink C

roslink B

roslink A

(a)

<<device>>
Legacy Device X

Legacy Program 1

<<component>>
legacy::Link A

<<device>>
Legacy Device Y

Legacy Program 2

<<component>>
legacy::Link A

Legacy Program 3

<<component>>
legacy::Link A

<<device>>
ROS PC X

ROS Node 1

<<component>>
ros::Link A

roslink A

roslink A

roslink A

(b)

Legacy Device X

Legacy Program 1

<<component>>
legacy::Link A

<<component>>
legacy::Link B

ROS PC X

ROS Node 1

<<component>>
ros::Link A

ROS Node 2

<<component>>
ros::Link B

ROS Node 3

<<component>>
ros::Link C

<<component>>
legacy::Link C

roslink C

roslink B

roslink A

(c)

<<device>>
Legacy Device X

Legacy Program 1

<<component>>
legacy::Link A

Legacy Program 2

<<component>>
legacy::Link A

Legacy Program 3

<<component>>
legacy::Link B

<<device>>
ROS PC 1

ROS Node 1

<<component>>
legacy::Link A

<<device>>
ROS PC 2

ROS Node 2

<<component>>
legacy::Link B

ros

roslink B

roslink A

roslink A

(d)

Fig. 1. A UML Deployment diagram of four examples of topology: (a) independent bridges for each legacy program (b) a bridge for all legacy applications
(c) a legacy program provides conceptually independent services using different nodes in ROS (d) multiple legacy services are mapped to the same node,
while a single bandwidth demanding connection is realized through an independent roslink to another machine

parameters indicate the legacy request and response types,
and the following two parameters denote the corresponding
ROS request and response types. These can be followed by
additional parameters that indicate the classes to be used for
the conversion. If left unspecified, the class used for the con-
version defaults to the roslink::DefaultMapper template class.
Listing 2 shows two specialization of this class to actually
convert a ROS request into a legacy request, and to perform
the opposite conversion for the response. Similar functions (de-
clareServiceClient, declarePublisher, and declareSubscriber)
can be used to declare other mappings. Besides letting specify
the converted types through its template parameters, each
function takes two parameters. The first indicates the topic
(or service) to be mapped. The second, optional parameter,
is a reference to a ros::NodeHandle. This can be used to
create different mappings for topics (or services) that have
the same name but are located at different locations of the
namespace tree. Passing the “∼” node name allows mapping

Listing 1. Legacy service

i n c l u d e <he l ium / l e g a c y / l e g a c y . h>

/ / l e g a c y f u n c t i o n
bool a d d I n t s (c o n s t s t d : : p a i r<i n t , i n t>& in , i n t& o u t){

o u t = i n . f i r s t + i n . second ;
re turn true ;

}

i n t main (){
l e g a c y : : Link l (” a d d e r l i n k ”) ;
l e g a c y : : NodeHandle n (l) ;
l e g a c y : : S e r v i c e S e r v e r s e r v e r =

n . a d v e r t i s e S e r v i c e (” a d d t w o i n t s ” , a d d I n t s) ;
l e g a c y : : s p i n () ;

}

topics/services in the private namespace as well.

Listing 2. Mapping node for the legacy service

i n c l u d e < r o s l i n k / r o s l i n k . h>
i n c l u d e ” r o s l i n k / AddTwoInts . h ”

namespace r o s l i n k {
/ / m a r s h a l l i n g f u n c t i o n s
template<>
s t r u c t Defaul tMapper<r o s l i n k : : AddTwoInts : : Reques t ,

s t d : : p a i r<i n t , i n t>
>{

s t a t i c s t d : : p a i r<i n t , i n t>
g e t (c o n s t r o s l i n k : : AddTwoInts : : Reques t& r){

re turn s t d : : make pa i r (r . a , r . b) ;
}

} ;

template<>
s t r u c t Defaul tMapper<i n t ,

r o s l i n k : : AddTwoInts : : Response
>{

s t a t i c r o s l i n k : : AddTwoInts : : Response
g e t (c o n s t i n t& i){

r o s l i n k : : AddTwoInts : : Response r ;
r . sum= i ;
re turn r ;

}

} ;
}

i n t main (i n t argc , char∗∗ a rgv){
r o s : : i n i t (a rgc , argv , ” a d d e r ”) ;
r o s : : Link l (” a d d e r l i n k ”) ;
l . d e c l a r e S e r v i c e S e r v e r
<s t d : : p a i r<i n t , i n t >, i n t ,

r o s l i n k : : AddTwoInts : : Reques t ,
r o s l i n k : : AddTwoInts : : Response
> (” a d d t w o i n t s ”) ;

l . n o t i f y M a s t e r () ; / / name s e r v e r r e g i s t r a t i o n
r o s : : s p i n () ;

}

Listing 3. Service definition (AddTwoInts.srv)
i n t 6 4 a
i n t 6 4 b
−−−
i n t 6 4 sum

III. TEST CASES

The initial motivation for the development of ROSlink was
making M3-Neony [17] control code and its GUI (shown in
Fig. 2) available through ROS. Currently, the control code
exports 13 services and 9 publishers, while the interface
provides 11 publishers and subscribes to 5 topics, but this
numbers are going to grow in the immediate future. The legacy
code runs on PNM-SG3 from Pinon, a low power consumption
(5W) 500 Mhz Geode based CPU board with 512Mb of
RAM. The motherboard serial ports, used to communicate
with the serial bus of the servomotors, are available only
from Windows, and, given the reduced computational power,
Windows 2000 was chosen as the OS intalled on the robot.

The interface used for the robot’s control, a Gtk based GUI, is
currently used from Mac OS 10.6, Ubuntu 9.10, and Windows
XP machines, and occasionally run inside the robot itself
for quick demonstrations or inspections of the robot’s state.
The current version of ROSlink was proven successful in
connecting both the robot’s control code and the GUI to new
ROS based software, running in ROS electric (on Ubuntu
11.10) and ROS fuerte (on Ubuntu 12.04).

To verify the code portability, ROSlink was then tested on
QNX 6.5.0, Windows98 (helium compiled with MinGW gcc
4.6.2), and Windows 7 (helium compiled with Microsoft Visual
C++ 2010 Express). In all these settings, test programs (a
legacy publisher, a subscriber, a client, a server and interac-
tion with the parameter server) were compiled and worked
successfully. The spectrum of systems in which the ROSlink
works is probably much broader. Code is now distributed
under GPL license at http:// sourceforge.net/projects/ roslink/ ,
and users are suggested to report successful compilation in
other operating systems on the project’s wiki or, conversely,
to open a ticket if they find difficulties in compiling helium
on a particular system.

The overhead introduced by ROSlink was then measured. In
ROS, apart from the initial communication setup up through
roscore, the communication between a publisher and its
subscribers, or between a client and a server, is direct. In
ROSlink, the communication takes place by two hops: from
the legacy code to the mapping ROS node containing the
ros::link object, and from such node to the actual subscriber
or server. Roughly speaking, we can thus expect a doubling of
the time required for the communication. Figure 3 reports the
times measured for each of the ROS communication modalities
for processes (legacy code and ROS nodes) running on the
same machine, specifically a Ubuntu 12.04 machine powered
by an Intel i7-2700K CPU at 3.50GHz and 8Gb of RAM.
All the measurements were repeated 1000 times, at intervals
of 1 second. Average times are reported with their standard
deviation as notes in the figure.

In particular, Fig. 3 indicates how the time is divided
among the phases necessary for the communication to take
place. For instance, the first row reports what happens when
a legacy::Publisher sends a message through its legacy::link
connection to a ROS node that subscribes to the topic. The first
102.9 microseconds are spent for sending the message through
the legacy::link to the matching ros::link. The following 191
microseconds are used by ROS for passing the message from
the node containing the ros::link to the subscribing node.
More precisely, the first portion accounts for the time elapsed
from the legacy::Publisher publish function invocation to
the invocation of the publish function of a corresponding
ros::Publisher automatically created by the ros::Link object,
while the second portion corresponds to the time spent from
the invocation of the ros::Publisher’s publish function in
the ros::Link’s node to the execution of the corresponding
ros::Subscriber callback in the subscriber node.

We notice that the average overhead time is below our
time doubling estimation, dropping as low as less than a 20%

Fig. 2. M3-Neony (on the left), and its control GUI (on the right). Code running inside the robot is used to control its 22 servomotors, and to read the
onboard sensors: 90 tactile sensors, 2 gyroscopes, 3 accelerometers, 2 cameras and 2 microphones.

increase for non persistent client-server service calls, where
most of the time is spent for establishing the communication
between the two ROS nodes.

IV. CONCLUSION AND FUTURE WORK

In this paper ROSlink, a project aimed at integrating legacy
code into ROS systems, was described. Design policies that
make it an interesting solution for integrating legacy code into
ROS based systems were briefly discussed.

The basic concept underlying ROSlink, named links that
bind legacy::Link to ros::Link objects with the same name, was
presented. Two of the advantages of this kind of architecture
were highlighted. First, it provides great flexibility in the
organization of the data flow, and it allows runtime network
topology changes. Second, it is conceptually very intuitive: all
the NodeHandles (and the associated ROS names) created in
the legacy code can be thought as constructed in the ROS node
containing the matching ros::Link. This, in turns, eases the
exploitation of the powerful ROS name remapping system. It is
in fact sufficient to act on the ROS node containing a ros::Link
object to remap the names of the legacy code including the
corresponding legacy::Link.

The main technical solutions adopted for minimizing the
changes required to the legacy system, and, at the same
time, for making the API easy to use, were explained. In
the development of ROSlink, in particular, it was chosen
to provide the legacy system with an API that mirrors the
roscpp ones. This allows ROS users to use ROSlink without
difficulties. Additionally, if the code is moved to a native ROS
environment at a second time, the porting process becomes
trivial. Another choice taken in ROSlink is keeping the helium
library, used by the legacy code, self contained, as to remove

any possible dependency problem that may arise with the
libraries installed in the legacy system. Finally, to minimize
the changes required to the legacy code, ROSlink allows any
legacy data type to be used as topic message or as service
request/response. The conversion into and from data types
streamable by ROS is performed outside the legacy system,
in the ROS node containing the ros::Link object.

The next steps that will be taken for the project development
deal with a simple extension of the current functionalities.
For instance, it will be straightforward to introduce a set of
ROS DEBUG-like macros that, called on the legacy system,
use the ros::Link to actually output to the ROS default logger,
provided by rosconsole. Another step to be taken is extending
the support of ROSlink to programming languages other than
C++. In fact, even with the sole C++ implementation, ROSlink
users may compile ROSlink as a shared library and write a
thin wrapper for other programming languages, for instance,
using SWIG [18]. However, providing native API in other
broadly used languages like Python, Java or Lisp would be
surely beneficial in speeding up the interconnection of legacy
systems and ROS.

For this purpose, ROSlink could be made compatible with
rosbridge. In particular, it would be possible to maintain
the ROSlink interface exposed to the legacy code and the
concept of named links, for keeping the advantages described
in this paper. The communication with ROS, instead, could
be easily reimplemented using a patched version of rosbridge.
This solution was discarded for the initial implementation of
ROSlink, as a direct, C++ implementation of both ends of
the communication, using a simple custom protocol, allowed
to keep the code much simpler and to minimize the over-
head. Compatibility with rosbridge, possibly provided as a

Generic ROS NodeMarshalling ROS Node
(ros : :Link)

Legacy code
(legacy : :Link)

3.3: service response (ROS type)
3.2: service response (legacy type)

3.1: service request (legacy type)
3: service request (ROS type)

4.3: service response (legacy type)
4.2: service response (ROS type)

4.1: service request (ROS type)
4: service request (legacy type)

2: topic update (ROS type)
2.1: topic update(legacy type)

1.1: topic update (ROS type)
1: topic update(legacy type)

Fig. 3. UML sequence diagram of the communication between a legacy node
and a generic ROS node. Notes indicate the average communication time,
with its standard deviation in parentheses, obtained with 1000 measurements
at 1 second time interval. All the times are given in microseconds. The
four possible communication cases are reported: (1) A legacy publisher
communicating with a ROS subscriber. (2) A legacy subscriber receiving
updates from a ROS publisher. (3) A legacy server called by a ROS node.
(4) A service provided by a ROS node called from a legacy program. In the
case of service calls, ROS allows to declare the connection between the client
and the server as persistent. For service invocations, therefore, the notes report
two times: the one obtained with a non persistent connection (np) and the one
obtained with a persistent connection (p). The time spent for marshalling, i.e.
for the conversion between the ROS types and the legacy types or the other
way around, is included in the communication time between the legacy code
and the marshalling node for all the communication scenarios. Topics consist
in four 64 bit ints, service requests in two 64 bit ints and service responses
in eight 64 bit ints, that were progressively filled in with the times measured
along the message path.

compilation time option, would however simplify the porting
of rosbridge to the languages for which rosbridge already
has a client, and would allow ROSlink to benefit from the
community that is actively maintaining rosbridge.

REFERENCES

[1] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage
project:tools for multi-robot and distributed sensor systems,” in Proc.
of the 11th Int. Conf. on Advanced Robotics (ICAR 2003), Coimbra,
Portugal, 2003, pp. 317–323.

[2] J.-C. Baillie, “Urbi: towards a universal robotic low-level programming
language,” in 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS 2005), Sendai, Japan, 2005, pp. 820 – 825.

[3] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot genes,”
Robot. Auton. Syst., vol. 56, no. 1, pp. 29–45, 2008.

[4] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon, “Rt-
middleware: distributed component middleware for rt (robot technol-
ogy),” in 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS 2005), Sendai, Japan, 2005, pp. 3933 – 3938.

[5] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar, “Miro - mid-
dleware for mobile robot applications,” IEEE Transactions on Robotics
and Automation, vol. 18, no. 4, pp. 493 – 497, 2002.

[6] D. Calisi, A. Censi, L. Iocchi, and D. Nardi, “Openrdk: A modular
framework for robotic software development,” in 2008 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS 2008), Nice, France,
2008, pp. 1872 –1877.

[7] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback,
“Towards component-based robotics,” in 2005 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS 2005), Sendai, Japan, 2005, pp.
163 – 168.

[8] C. Côté, Y. Brosseau, D. Létourneau, C. Raı̈evsky, and F. Michaud,
“Robotic software integration using marie,” International Journal of
Advanced Robotic Systems, vol. 3, no. 1, pp. 55–60, 2006.

[9] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardization
in mobile robot programming: The carnegie mellon navigation (carmen)
toolkit,” in 2003 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS 2003), Las Vegas, NV, USA, 2003, pp. 2436–2441.

[10] H.-S. Park and S. Han, “Development of an open software platform for
robotics services,” in ICCAS-SICE, 2009, 2009, pp. 4773 –4775.

[11] A. Huang, E. Olson, and D. Moore, “LCM: Lightweight Communi-
cations and Marshalling,” in 2009 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS 2009), Taipei, Taiwan, 2009, pp. 4057 –4062.

[12] T. Galluzzo and D. Kent, “The OpenJAUS Approach To Designing And
Implementing The New Sae JAUS Standards,” in AUVSI Unmanned
Systems Conference, 2010.

[13] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[14] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in 2011 IEEE Int. Conf. on Robotics and Automation (ICRA 2011),
Shanghai, China, 2011, pp. 1–4.

[15] C. Rich, B. Ponsler, A. Holroyd, and C. Sidner, “Recognizing engage-
ment in human-robot interaction,” in 2010 5th ACM/IEEE Int. Conf. on
Human-Robot Interaction (HRI), Osaka, Japan, 2010, pp. 375 –382.

[16] C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins., “Rosbridge:
Ros for non-ros users,” in Proc. of the 15th Int. Symp. on Robotics
Research, Flagstaff, AZ, USA, 2011.

[17] T. Minato, F. DallaLibera, S. Yokokawa, Y. Nakamura, H. Ishiguro,
and E. Menegatti, “A baby robot platform for cognitive developmen-
tal robotics,” in Workshop on ”Synergistic Intelligence” at the 2009
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2009), St.
Louis, MO, USA, 2009.

[18] D. M. Beazley, “Swig: an easy to use tool for integrating scripting
languages with c and c++,” in Proc. of the 4th Conf. on USENIX Tcl/Tk
Workshop, 1996 - Volume 4, Berkeley, CA, USA, 1996, pp. 15–15.

