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Abstract— Touch is an important means for communication
among humans. Sport instructors or dance teachers often use
touch to adjust students’ postures in a very intuitive way. Using
tactile instructions appears thus to be a very appealing modality
for developing humanoid robot motions as well. Spontaneous
interpretation of tactile instructions given by users reveals itself
to be a complex task for artificial systems. This paper describes
a proof of concept system for robot motion creation based on
tactile interaction. The system is interesting for two reasons.
Firstly, it shows the feasibility of using tactile instructions for
motion development. Secondly, it can be used as a tool for
studying the way humans intuitively use touch to communicate.
This, in turn, will allow the development of better algorithms
for predicting the meaning of tactile instructions. Results of
a pilot experiment are discussed, and a first set of features
of tactile communication, yielded by the analysis of the data
collected, is identified.

I. INTRODUCTION

Touch is an important but often overlooked communica-
tion means used by humans. It is very rich: intensity, fre-
quency, velocity, abruptness, contact time, surface of contact
are just some of its features [1]. Touch is fundamental in
the interaction between infants and their caregivers [2]. It is
used to communicate both emotions and specific information,
like the presence or absence of a caregiver or the identity
of the person touching the infant. Studies with toddlers [3]
show that touch is so informative that the sole information on
touch can be used to measure the “quality of interaction”. At
older ages, tactile communication maintains its importance.
For instance, in dance, haptic interaction is fundamental for
the coordination between partners [4].

However, to date, few quantitative studies have been
performed on human tactile interaction [1], mainly due to
difficulties in actually measuring the numerous parameters
of touches in social contexts. For instance, the way sports
coaches or dance instructors use touch to communicate with
their trainees remains completely unexplored. This aspect is
of high interest for robotics. In fact, motion development is
still one of the most time consuming tasks. Letting users
correct robots’ movements in the same way sport instructors
modify the postures of their students appears to be a very
appealing way for intuitively teaching movements to robots.
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This paper presents the possibility of using the interpreta-
tion of tactile instructions for the development of motions.
The advantages of interpreting tactile instructions are dis-
cussed in Section II, which compares the presented idea to
the approaches found in literature. A proof of concept system
implementation, based on supervised learning of the meaning
of tactile instructions, is described in Section III.

Data acquired from the system usage are analyzed in
Section IV. The main purpose of the experiment is studying
how humans employ touch to teach motions. These results,
although preliminary, are important because they can be
used for future development of better interpreters of the
meaning of tactile instructions. In particular, the general
knowledge extracted can be employed to reduce the need of
teaching the meaning of tactile instructions, that is essential
in the completely supervised learning approach presented
here. Section V concludes the paper by summarizing the
results and describing future work.

II. RELATED WORKS

In the field of the generation of robot movements, human-
robot interaction is often used as a way for transferring
knowledge from humans to robots. This transfer of knowl-
edge can decrease the prohibitive learning times of self-
exploration. Plenty of solutions, that often go under the name
of Programming by demonstration [5] or Robot coaching [6]
were presented.

A very diffused approach, motion retargeting, consists in
acquiring the movement of a human performer and adapting
it to the robot [7]. This technique presents several incon-
veniences. Generally the equipment is expensive, requires a
careful setup and is not accessible to most users. Record-
ing requires the availability of an actor able to perform
the desired movement. Finally, differences between humans
and robots require an intensive adaptation of the human
motion, that strongly degrade the appearance of the final
motion. Similarly, on-line control of robots using the data
from Microsoft Kinect was recently presented as a possible
inexpensive solution.

Another way for humans to teach motions to robots is
through direct physical interaction [8]. When using this setup
the possibilities and limitations of the robot, in terms, for
instance, of joint range or maximum torque, can be easily
felt by the user [9]. The idea appeared very early in the field
of industrial robot arms, being referred to as direct teaching,
guiding, or play back. This approach is nowadays largely
employed and continues to draw attention, both for industrial
manipulators and mobile robots [10], [11].



Similarly, when dealing with humanoid robots, kinesthetic
demonstration [12] is often employed. Within this approach,
users directly grasp and move a robot’s limbs, providing
demonstrations of the task that are sufficient for the robot
to extract a probabilistic model of the movement.

At first glance, the approach presented in this paper, called
TbT, Teaching by Touching, resembles Kinesthetic demonstra-
tion. However, the two approaches are very different. When
teaching by kinesthetic demonstration, the robot moves pas-
sively in response to the force applied to it. More specifically,
during kinesthetic demonstration the robot motors are usually
switched off. As possible alternatives, a subset of the motors
can be made passive only when necessary [13], or compliant
actuators can be employed [14].

TbT regards tactile interaction as a communication means,
instead of considering it merely as a way to set a robot’s
posture. Specifically, the tactile information is considered as
an instruction that carries the intention of the user. In fact,
while kinesthetic demonstration resembles the interaction
between a puppeteer and a puppet, TbT aims to mimic
the interaction between a coach and a human trainee, who
interprets the instructions received.

TbT presents several advantages over kinesthetic demon-
stration. A single touch can be associated to the simultaneous
movement of both arms and legs, while it would be very
difficult to move the four limbs of a robot simultaneously
with classical kinesthetic demonstration. Additionally, with
large robots, kinesthetic demonstration may be infeasible, if
compliance and gravity compensation are not adopted.

Most importantly, when the robot interprets the meaning
of tactile instructions, it can apply a set of corrections
assumed to be useful. For instance, when receiving in-
structions on how to modify the motion, the robot could
apply small modifications in order to satisfy criteria like
dynamical stability, perfect symmetry between the right and
left joints (often desired but difficult to be realized by direct
manipulation), minimization of the body oscillations, of the
load on the knee servomotors, and so forth.

Conceptually, kinesthetic demonstration could be consid-
ered as a special case of TbT. In fact, it is possible to
make the robot interpretation correspond exactly to the effect
that the application of the force would have on a robot
with passive motors. Additionally, we need to notice that
kinesthetic demonstration is essentially just the result of the
forces applied in the interaction over the robot structure.
In contrast, within the TbT approach, any feature of touch
could be considered as a component of tactile instructions.
Therefore, an advanced “somatic alphabet”, such as the one
presented in [15], could be used as the instruction input.
Similarly, the input does not need to be limited to tactile
sensors located on the robot surface. For instance, torque
sensors in the actuators may be considered as well.

A preliminary evaluation of the TbT approach, conducted
with simulated touch sensors, was provided in [16], showing
TbT advantages in terms of reduction of the motion devel-
opment time. This paper presents the actual implementation,
with a robot equipped with tactile sensors on its whole body.
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Fig. 1. Different touch meaning in different contexts. The same touch
corresponds to two different meanings depending on the context.

A detailed analysis of the tactile instructions provided in a
pilot experiment is also given.

III. SYSTEM IMPLEMENTATION

Although human trainees are able to spontaneously grasp
the meaning of tactile instructions given by their coaches, the
interpretation reveals itself to be very complex for artificial
systems. In the first instance, the meaning of tactile instruc-
tions is both context and user dependent. Fig. 1 provides an
example of context dependency. If users press the upper part
of the leg when the robot is standing they could imply that
the robot should bend the leg backwards. However, when
the robot is squatting, the same touch on the leg could mean
that the robot should bend its knees further. Furthermore,
experiments with a simulator [16] showed that when asked
to interact freely with the robot, different people tend to give
different meaning to similar tactile instructions.

Given these difficulties in the interpretation of tactile
instructions, and the absence of models in literature, we
adopted machine learning for the construction of the map-
ping from tactile instructions and their context to motion
modifications. Thanks to this choice the system completely
adapts to the user, who is free to create associations between
touch patterns and movement modifications. Furthermore,
data collected during the interaction can be analyzed, and
general policies underlying the user’s way of associating
touch patterns to motion modifications can be extracted.
More specifically, in our system, the learning of the mapping
occurs during motion development. In this way the user is not
requested to teach the meaning of the touch instructions in a
specifically devised session, but can provide them in contexts
that naturally appear during the motion development.

A conceptual schema of the motion development process
is reported in Fig. 2. The user observes the motion, and
provides a touch instruction to modify the movement or add
new features to it. For simplicity, the current system uses a
key-frame based description of the motion, i.e. the movement
is defined as a sequence of postures that the robot must
assume over time. Motion modifications therefore correspond
to the editing of the posture assumed by the robot at a
selected instant of the motion. If the robot correctly interprets
the tactile instruction, then the user just keeps developing the
motion. If the robot does not respond as expected, instead,
the user shows the robot the desired motion modification.

Specifically, in the actual system implementation, wrong
estimations of tactile instructions are signaled to the robot by
using a pedal, as shown in Fig. 3. While the pedal is being
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Fig. 2. Schema for motion development. Users touch the robot to edit
the posture of a keyframe. The robot interprets the meaning of the tactile
instruction and changes its posture accordingly. Users then evaluate the
change in the robot’s motor positions. If the movement corresponds to their
intention then they will continue to develop the motion, otherwise they will
teach the robot the meaning of the touch instruction.

pressed, the user can show the correct interpretation using
two auxiliary communication means: directly setting each
angle through a GUI and using kinesthetic demonstration.
We stress that this doesn’t bring the drawbacks of kinesthetic
demonstration previously listed to the TbT approach. In fact:
1) The meaning of a touch needs to be taught just once,
and can thereafter be reused. The user faces thus
the drawbacks of kinesthetic demonstration much less
frequently.

2) Any modality, like speech recognition, can be used.

When the pedal is released, a new association between
the touch pattern given when the pedal was first pressed
and the movement provided while holding the pedal down
is stored in a database. Initially, this database is empty and
the robot does not respond to any touch instruction, but by
incrementally teaching the meaning of new instructions the
tactile instruction interpretation is improved more and more.

In practice, this database of examples of the mapping from
touch instructions and their context to posture modifications
is used by a supervised learning algorithm to estimate the
meaning of tactile instructions. A locally weighted learning
algorithm [17], and in particular Kernel Regression with a
specifically devised kernel, is used to predict the desired
motion modification for a given touch input.

As briefly stated above, the meaning of tactile instructions
is context dependent. In the current implementation, the
context consists of the angular positions of all the motors
and the robot’s orientation. Joint angles allow discriminating,
for instance, squatting positions from standing positions,
which could require different interpretations of the tactile
patterns as shown in Fig. 1. Similarly, the robot’s orientation
is important for tactile interpretation because, for example,
the meaning of the touch instructions may change depending
on whether the robot is standing or lying down.

Formally, let us assume the robot to have n tactile sensors
and m motors. Let us then use o = 2 variables to describe

the robot’s orientation, expressed as the inclination and the
orientation around the vertical and computed as in [18].
The interpretation of a touch instruction is a function that
given as input [, € R"™™*° je. the touch pattern and
its context, provides an output M, € R™ that expresses
an angle modification for each of the joints. Let us denote
by E the number of examples of the mapping from touch
instructions with their context to posture modifications. For
each of these examples let us consider its input I; € R"*Tm+
and the corresponding output M; € R™, 1 < ¢ < E. The
estimation of the desired joint modification can be calculated
as a function of the stored outputs:

M, Z (I, I)M

where the function w(Z,, I, Z) gives the similarity between the
system input I, and the input of the ¢-th example I;. We
require w(I,, ;) to meet the following criteria:

1) The stronger the user pushes the sensors, the further
the robot joints are rotated.

2) The more the touch pattern and context of an example
differ from the system input, the less the movement
associated to that example contributes to the output.

3) The examples whose touch pattern includes the pres-
sure of sensors that are not pushed in the touch
instruction I, provide no contribution to the output.

As an example of the importance of the last rule, imagine

the robot to be in a sitting position with its legs stretched
forward. Assume that a user pushes the foot toes and the
heel of one leg simultaneously, teaching the robot to bend
the knee and bring the legs close to the body. Suppose that at
a later moment the robot is touched only on the toe portion of
its foot. Many users could desire to associate this touch with
a simple foot rotation. The third criterion specified above
prevents the complete leg for being moved, given the absence
of heel pressure in I,.
We set w(l, I;) as
0 if ds:seW; As¢ U,
w(ls, ;) = Moy, 1)/
L= 45, u, T2
where, assuming to normalize all the components of I; and
I,. by their respective variance in the dataset of E' examples,

o I; € R™ denotes the set of components of the i-th input
corresponding to the tactile sensors, and I; € Rmto
denotes the remaining components of I;, i.e. the context.
Analogous definitions are given for I, and I,.

o Ii(é) € R denotes one of the components of I, i.e. the
force applied to the s-th tactile sensor, 1 < s < n. An
analogous definition is given for I is)

o U, denotes the set of sensors pushed in the ¢-th example,
ie. U, ={s: 1 ) > 0}.

Essentially, the COIldlthIl ds:s € U; As ¢ U, is used

to satisfy the third criterion, while the numerator and the
denominator of the fraction are used to comply with the

otherwise




Fig. 3. System implementation. A pedal allows the users to easily switch
between the motion development mode and the fouch meaning provision
without having to move their hands away from the robot.

first and the second criterion, respectively. Actually, a set
of different w functions were tested by the same user in the
development of a walking motion, and the one that led to
the least number of unexpected robot responses was chosen.

IV. EXPERIMENT

In order to test the feasibility of the proposed approach,
four users were asked to teach a motion to a humanoid robot
using the proposed touch interface. Specifically, the subjects
developed Algorithm Exercise, a famous dance appearing in
a Japanese TV show for children. This dance was chosen
because it is complex enough to require the user to teach a
large number of different postures to the humanoid but it is
simple from the view point of balancing the robot. Snapshots
of the realized motion' are shown in Fig. 6.

The robot employed in the experiments is VStone M3-
Neony, a 22 DOF humanoid robot equipped with 90 tactile
sensors on its whole body. The location of its actuators and
tactile sensors is reported in Fig. 4.

The tactile instruction corresponds to a 114-dimensional
vector, which indicates the pressure of each sensor, the
robot’s posture and its orientation. Given the very high
dimensionality of the input, a great variety of responses to
tactile instructions can be taught.

The test subjects — three males and one female — are
Japanese Engineering students at Osaka University. They
are all right handed, and their age ranges from 23 to 25
years. These users are familiar with VisiON 4G, a robot that
has a structure similar to the one of M3-Neony but lacks
tactile sensors. Furthermore, the subjects had never used the
TbT interface and did not know its underlying concepts.
The subjects could effectively use our system to develop the
motion, with an explanation of the system usage that required
less than 5 minutes. The time required for development
greatly varied between the users, ranging from 1.5 to 8 hours.
Actually, for dancing motions, there is no clear criterion for
determining when the motion is acceptable, and users decide
that the motion is satisfactory with very different criteria.

A video is available at
http://robotics.dei.unipd.it/~fabiodl/video.php?alg

Fig. 4. Location of the motors and tactile sensors of M3-Neony. Motor
IDs are shown inside circles, while sensor IDs are shown inside rectangles.

For instance, a user tried to reproduce the motion shown
with very high precision in movements and timings, while
another focused mainly on the motion smoothness, and a
third terminated its work as soon as the gestures of the robot
corresponded to the human ones. Future works will also test
the realization of motions with quantitative goals, like “kick
a ball at least 50 cm far”.

During motion development, the users provided the mean-
ing of an average of 95.75 (standard deviation 6.55) tactile
instructions. Actually, once instructions are taught, these can
not only be reused, but also combined, simply by pressing
multiple sensors simultaneously, as the equations previously
reported indicate. For instance, if the robot is taught to look
downwards when its chin is pressed and to turn its head
leftwards when its right cheek is touched, then if its chin
and right cheek are pushed together, the robot will shift its
gaze toward its own left foot. In the following discussion let
us denote by the word instruction a basic association between
sensors and angle changes taught, and by the term touch a
tactile pattern applied to the robot, that, as in the previous
example, can consist of multiple instructions.

The subjects provided an average of 867.5 touches, that
were translated into an average of 1181.2 instructions, show-
ing that the users actually exploited the superposition of
several tactile instructions in the same fouch. Fig. 5 reports
the ratio between the number of touch meanings taught and
the number of touches provided. This ratio decreases over
time, showing that the users need to teach fewer and fewer
instructions because they can effectively reuse the ones they
already taught.

As a first analysis of the mappings between touch in-
structions and motor posture changes taught by each user,
we calculated the mutual information between the value of
each sensors and the rotation given for each of the motors.
To compute the mutual information, we initially discretized
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Fig. 5. Touch meanings provision over time for the four users. Each panel
refers to a user, as indicated on the right side. The x axis represents the cu-
mulative percentage of touches provided throughout the whole experiment.
The solid line shows the ratio between the touch meanings taught and the
number of touches provided. The dashed line shows the ratio between the
number of meanings taught and the total number of meanings taught by the
user during the whole experiment.
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Fig. 6. Snapshots of the robot performing the target movement.

the data. In detail, each sensor information was reduced
to a binary value, 0 for a pressure less than 20% of the
maximum force measurable by the sensor and 1 otherwise.
Similarly, each motor change information was set to 0 if
the user moved the motor less than 5 degrees, to -1 if the
movement exceeded 5 degrees in clockwise direction and +1
if the movement exceeded 5 degrees in counter clockwise
direction. The threshold of 20% for the touch sensor was
chosen empirically, observing that when users touch a sensor

they commonly apply a force much higher than the 20% of
the maximum measurable force, while noise is far below
this threshold. Similarly, the threshold of 5 degrees for the
motor rotations was selected observing that intentional joint
angle changes exceed 5 degrees while unintentional ones are
contained within this threshold.

Fig. 7 illustrates the results, normalized as in [19]. We
notice that the users mainly touched the sensors on a limb to
move motors on the same limb. However, the subjects didn’t
restrict themselves to a one to one correspondence between
joints and sensors. Several sensors were used to actuate a
single joint and conversely a single sensor actuated several
joints. We also notice that different users tend to provide dif-
ferent mappings, even if the experimental conditions (robot,
task and subjects’ background) are the same. This confirms
the user dependence of the touch protocol [16], and therefore
the need for using different mappings for different users.

Interestingly, statistical dependence between the sensors
on the top of the head and the leg motors for some users
can be observed. Direct inspection of the data shows that
the first user taught the robot to squat in response to touches
on the head. Similarly the fourth user employed the sensors
on the back of the robot’s head to make the robot lean
forwards and sensors on the front of the head to make
the robot lean backwards. For the first user we also notice
statistical dependence between the sensors placed on the side
of the robot’s body and the corresponding leg. By examining
the data, it was found that sensors on the side were used
to make the robot rotate the corresponding leg and bring
the knee outwards on that side (see Fig. 6(c)). Statistical
dependence between the sensors on the upper part of the left
leg (s00.lHipB and s01./HipF) and motors of the right
leg (m12.r HipP) derives from the fact that often when the
posture of one leg was changed the other leg was moved as
well to maintain the balance.

Multiple motors are usually moved by a single touch
instruction. We thus checked whether consistencies in the
relationship between the changes of different motors can
be found. Computation of the mutual information between
couples of motors yields the results reported in Fig. 8. We
notice a very strong statistical dependence between motors
belonging to the same limb. Statistical dependence between
the two legs is also observable. As discussed above, this can
be explained by the desire of the test subjects to keep the
robot balanced throughout the whole experiment.

The high statistical dependencies between different mo-
tors suggest that the motor changes could actually lie in
a low-dimensional manifold of the whole 22-dimensional
motor space. In particular, we analyzed how well the motor
change relative to the e-th example fits in a linear subspace
of dimension ¢ constructed from the motor modifications
taught in the previous e — 1 examples. In detail, we took
the motor changes specified in the first e — 1 examples
M ...M._1 and applied Principal Component Analysis
(PCA). We then considered the e-th example motor change
M., and projected the resultant vector on the subspace
defined by the first ¢ principal components v; . .. v,. Finally,
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Mutual information between sensor values and motor angle changes for the four subjects. Columns correspond to sensors, rows to motors. Each

label consists of an id (see Fig. 4), followed by a shorthand name. The color indicates the robot part. The entries that correspond to sensor and motors of
the same robot part are highlighted by a dashed rectangle. The intersection between a column (sensor) and a row (motor) is divided into four sections by
dotted lines. Each section corresponds to one of the users, with the topmost section corresponding to User 1 and the bottommost section corresponding
to User 4. The color of each section indicates the normalized mutual information value. For clarity, only mutual information values higher than 0.01 are
shown, and only sensors that have mutual information value higher than 0.01 with at least one motor are reported.

we calculated the infinity norm of the reconstruction error
eq(€) = HMe -y, MeTUiUiHOO-

Table I reports the reconstruction error for different set-
tings of ¢, 1 < g < 22, averaged over all the examples e, 1 <
e < E. For comparison, the error obtained by applying PCA
on the whole set of examples M ... Mg is also reported.
Precisely, the columns with header P.E. (previous examples)
and A.E. (all examples) report the projection error on the
subspace computed from M; ... M,_; and from M; ... Mg,
respectively. We notice that the difference is very limited,
indicating that considering the meanings taught by the user
for previous instructions can help in predicting the subspace

where the meaning of new instructions lie.

As widely known, motions of humans and humanoids can
often be described in a low-dimensional subspace of the joint
space as well [20]. We therefore analyzed whether the motion
modification M, can be projected with little errors on the
subspace where the robot movement lies. Specifically, for
each motor modification M., we identified all the postures
that the user brought the robot to before teaching M.. We
applied PCA to these postures and determined the principal
components ¥ ... ¥4. The average reconstruction error norm
obtained by projecting the posture modification M, on the
subspace defined by 7 ... 7, is also reported in the columns
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Fig. 8. Mutual information between couples of motors for the four subjects.
Each label consists of an id, corresponding to the ones reported in Fig. 4,
followed by a shorthand name. The colors of the labels indicates the robot
part. The entries that correspond to motors of the same robot part (e.g. same
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(sensor) and a row (motor) is divided into four sections by dotted lines. Each
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to User 1, 2, 3 and 4. The color of each section indicates the normalized
mutual information value.

with header P.P. (previous postures) of Table 1.

We notice that, except for ¢ < 5, the reconstruction
error is comparable to the one for the projection on the
subspaces constructed using the motor change information
M., 1 < e < E. Intuitively, this means that when the
users set the postures that realized the target motion, they
restricted their instructions to movements similar to those
that compose the target motion itself, instead of setting them
in a completely free manner (i.e. using motor changes in the
whole motor space). The target motion could thus be used as
additional information for a better estimation of the tactile
instruction meaning. For instance, once an initial guess of
the motion modification is computed, this could be projected
onto the subspace where the motion being developed lies.
Clearly these are preliminary results that need to be verified
extensively, and that could be influenced by the task choice.

V. CONCLUSIONS AND FUTURE WORK

This paper presented the idea of using the interpretation
of tactile instructions for robot motion development. A proof
of concept system was implemented, and data collected by
making people interact with the system were analyzed. The
system is interesting for two aspects.

Firstly, it shows that tactile interaction is a feasible method
for the development of robot motions. Preliminary experi-
ments with four students showed in fact that all the subjects

User 1 User 2 User 3 User 4
PE.|AE.|PP. |[PE.|AE.|PP. |PE.|AE.|PP. | PE.|AE.| PP.

30.0(28.7|46.4|24.0|21.1|52.8|20.3| 19.6|35.5|35.0{31.5|57.0
26.9(24.9139.5|21.5|18.4|37.7|18.3|16.9(29.0{30.9|27.8 |46.5
23.9122.0|35.5(19.4|16.1|29.4|16.9|14.9(19.0{27.0|23.4|30.7
22.3|20.3|25.7|15.9|13.6|26.0|15.4| 13.5|17.5|25.4|20.9|23.8
1117.8(22.3113.4110.9(17.9(14.2{12.1|14.8|22.7|17.8 |20.3
18.9(16.1|19.5(11.4| 9.4 |14.1|12.611.0{12.7{19.4|16.0|18.3
17.6/13.7|17.1|10.6| 8.1 |10.8|11.3|10.1{10.9{14.8|13.6|15.1
16.1/12.6(14.5/ 8.6 | 7.1 | 9.9 |10.0]| 8.6 | 9.7 |13.2|10.1|12.0
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were able to develop the motion without problems, and could
use the teaching by touching system without any training.

Secondly, our system shows the possibility of using hu-
manoids as a tool for studying how humans employ touch
to communicate specific knowledge. More in detail, the
system realizes the mapping between tactile instructions
and motion modifications by instance based learning. These
instances can be analyzed to identify general features of
the mapping. In turn, this allows the development of bet-
ter interpreters that require users to teach the meaning of
less instructions. In other terms, studying the data acquired
with the supervised learning system presented here allows
moving toward an unsupervised touch instruction interpreter,
or at least to reduce the number of examples that must
be provided. Furthermore, the data collected by the system
could in future be analyzed from the perspective of human
sciences. Clearly, measuring features of human-humanoid
communication is much easier than measuring human-human
communication, because the robot’s state can be easily
observed and controlled. Although humans and humanoids
are not identical, similarity in their shape and tendency of
humans to anthropomorphize inanimate objects [21] may
allow us to shed light on human-human communication by
observing human-humanoid communication.

The analysis of the experimental data shows that specific
algorithms for interpretation of tactile instructions are re-
quired, since the interpretation cannot be reduced to a simple
one-to-one mapping between sensor and joint angle modifi-
cations. Furthermore, results confirmed user dependence of
the mappings. However, general features were also identified:

1) Sensors on one limb are very frequently employed to
move joints of the same limb.

2) Associations between different parts, e.g. sensors on
the head to make the robot bend the knees, should



also be considered by the touch instruction interpreter.

3) The angle modifications that should be performed in
response to a tactile instruction can be constrained to
a linear subspace of the whole motor command space.

4) The subspace generated by the keyframe of the mo-
tions under development is (at least for some tasks) a
good subspace for the representation of the movements
expected in response to a touch instruction.

This results provide hints for the development of better
tactile instruction interpreters. In detail, in a probabilistic
framework, the pressure of a group of sensors on a limb
should be mapped with higher probabilities to movements
that regard the same limb. However, the system should in-
clude the possibility of representing “higher level” behaviors,
like squatting down when the head top is touched. Further-
more, the relationship between the responses to instruction
and the motion subspace suggests to give higher probabilities
to instruction responses that lie on the motion subspace.

Additionally, data analysis shows that refining the mapping
online, as proposed in this paper, is a feasible solution.
Specifically, for all the subjects, the need for teaching tactile
instruction meanings decreases over time.

Future work will concentrate on the evaluation of the
system. In particular, the motion development time for naive
users will be compared with the one of literature approaches.
At the same time, users enjoyment will be evaluated. We can
in fact expect some users to prefer interacting with an active
robot rather than with a passive robot or a GUI.

Actually, for a fair comparison, the system should be
compared with other approaches after it had already been
trained, i.e. after the database between tactile instructions
and motion modification had already been populated to
some extent. We also stress that the great advantage of the
presented system is the possibility to seamlessly introduce
a set of heuristics, like auto-balancing, that improve the
response to tactile instruction. The current system imple-
mentation does not exploit this feature on purpose, to show
that motion development through TbT does not require the
implementation of any particular heuristic.

Along these lines, we chose to employ the simplest motion
representation possible, a key-frame based representation.
This leads to the natural assumption that motion modifica-
tions consist in posture modifications. However, we stress
that TbT is not restricted to a keyframe based motion repre-
sentation. In fact, in [22] we presented, only in simulation,
the idea of having the robot controlled by a Central Pattern
Generator (CPG) and of modifying the complete movement
by changing the CPG parameters by touching. We also note
that, although the users teach static postures, the system can
be used to develop dynamic motions, like jumps [16].

A limitation of the current touch interpreter is that the
touches are considered independently, and not as a stream of
information. Future work will address this topic.
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