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Abstract

Stochastic resonance (SR) is a phenomenon occurring in nonlinear systems
by which the ability to process information, for instance the detection of weak
signals is statistically enhanced by a non-zero level of noise. SR effects have
been observed in a great variety of systems, comprising electronic circuits,
optical devices, chemical reactions and neurons. In this paper we report the
SR phenomena occurring in the execution of an extremely simple behavioral
rule inspired from bacteria chemotaxis. The phenomena are quantitatively
analyzed by using Markov chain models and Monte Carlo simulations.
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1. Introduction

Stochastic resonance (SR)[1][2] is a phenomenon for which the addition of
random noise can enhance the response to weak inputs in nonlinear systems.
Originally, SR was proposed by Benzi et al. to explain the periodic recurrence
of ice ages[1], the so-called Milankovitch cycles. In detail, the Earth climate
supports two stable states, one at a lower temperature (an ice age) and one at
a higher temperature. The external small, periodic modulations of the Earth
orbit were modeled as a deterministic “input” that biases the random cli-
mate changes toward one of the two states. Fluctuations attributable to the
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interactions between the atmosphere, the hydrosphere, the cryosphere and
the lithosphere were modeled as “random noise” that can cause transitions
between those two stable states. If the fluctuation amplitude is excessively
small, then the transitions occur too infrequently and out of tune with the
modulation given by the Earth orbit. Conversely, if the fluctuations are ex-
cessively large, the random transitions would be too frequent and, therefore,
not correspond to the modulation of the Earth orbit. However, for an opti-
mal amplitude of the fluctuations driven by the random noise, the transitions
can exhibit the period given by the small periodic modulation of the Earth.

Since its appearance in the seminal paper of Benzi et al., SR has been
attracting a lot of interest, and is being intensively studied. SR effects were
shown in a great variety of systems [3, 4]. In [5] Fauve and Heslot reported
a stochastic resonance effects in a discrete two-state electronic Schmitt trig-
ger. Successively, McNamara et al. [6] identified a SR effect in an optical
bistable system, a bidirectional ring laser. Several studies report SR effects
in semiconductors [7, 8], as well as in chemical reactions [9, 10, 11].

Stochastic resonance has been observed also in systems that do not in-
clude energetic barriers or sensing threshold, as shown in [12] using a model in
which a sequence of pulses is generated randomly with a probability function
of the input.

Several examples where technological applications could benefit from the
SR effect were presented, for instance [13] reports experiments on the re-
sponse of a superconducting loop with a Josephson-junction barriers, the
central element of a radio frequency Superconducting QUantum Interference
Device (SQUID). Similarly, [14] shows that the sensing of nonlinear optome-
chanical oscillators can be enhanced by SR effects. Interestingly, in [15]
Collins at all. showed that the range of noise amplitudes for which SR oc-
curs can be very wide.

SR appears to be exploited by living beings as well. For example, SR
effects were reported in ion channels [16], sensory neurons [17, 18], neu-
ronal networks of mammalian brains [19], and physiological systems [20, 21].
Stochastic resonance phenomena can also be observed at a behavioral level,
for instance in the synchronization of the cell dynamics due to extracellular
noise [22], detection of plankton by the paddle-fish [23] or in human posture
stabilization [24] and attention control [25].

One of the simplest behaviors found in nature is chemotaxis, the process
by which bacteria [26, 27, 28] or eukaryotic cells [29, 30, 31, 32, 33] sense
chemical gradients and move with directional preference toward food sources.
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In this paper we aim at showing that also this primitive and essential behavior
found in bacteria could be exploiting SR.

Among the most thoroughly studied organisms with regards to chemo-
taxis we can certainly cite Escherichia coli (E. coli), often taken in considera-
tion due to its well-characterized physiology, its simple chemotaxis signaling
pathway, its capacity to sense small concentration gradients of a chemoat-
tractants, and its possible use as either a natural host or a surrogate host for
plasmids coding of desired features or products [34].

This bacterium has only two ways of moving, rotating clockwise or counter-
clockwise [26]. When it rotates counter-clockwise, the rotation aligns its flag-
ella into a single rotating bundle and it swims in a straight line. Conversely,
clockwise rotations break the flagella bundle apart and the bacterium tum-
bles in place. The bacterium keeps alternating clockwise and counterclock-
wise rotations. In absence of chemical gradients, the length of the straight
line paths, generated by counter-clockwise rotations, is independent of the di-
rection. As a consequence, the movement consists in a random walk. In case
of a positive gradient of attractants, like food, E. coli reduces the tumbling
frequency. In other terms, when the concentration of nutrients increases,
the bacterium proceeds in the same direction for a longer time. This strat-
egy allows to bias the overall movement toward increasing concentrations of
the attractant. Such a simple mechanism works despite the difficulties in
precisely sensing the gradient. Actually, the spatial gradients in concentra-
tion cannot be sensed directly due to the small dimensions of the bacteria,
so temporal difference in the concentration is used to estimate the nutrient
distribution.

A wide spectrum of models, from a very abstract point of view to the
modeling of the protein interactions, is available in literature [35, 36, 37].

Few studies however analyze the effect of noise on the chemotactic be-
havior. Furthermore, the noise is seen mainly as a nuisance in sensing that
should be filtered out by the bacterium [38, 34], similarly to what is usually
done in control theory.

Using a very general model, we instead show that external noise can ac-
tually increase the chemotactic performance. Precisely, we show that the
presence of an appropriate level of noise can increase the mutual information
between the stochastic distribution of the position of bacteria performing
chemotaxis and the spatial concentration of nutrients. This mutual infor-
mation increase corresponds to an increase of the chemotactic performances,
revealing that external (or internally generated) noise can actually be bene-
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ficial for chemotactic behaviors.

2. Minimalistic behavioral rule

Living beings are very interesting from an engineering point of view, since
while robots find difficulties in coping with noise and errors in the recognition
or control processes [39, 40, 41], biomolecules [42] operate using energies
comparable to thermal fluctuations. Chemotaxis is one of these cases where
the mechanism adopted by living organisms reveals to be a simple solution
for the control of robots as well [43, 44, 45].

We found that the following simple behavioral rule can work appropriately
for a large variety of problems:

• when the current behavior works well, the following behavior is gener-
ated by applying random fluctuations to the current behavior

• when the current behavior does not lead to improvements of the robot
state, the following behavior is chosen randomly.

The previous rule can be formalized mathematically in a way independent
from the problem setup. Let us define with the generic term “particle”
a robot, a simulated bacteria, or any agent moving according to the rule.
Denote by xt ∈ R

n its state at time t and similarly by ut ∈ R
m the action

taken by the particle at time t. We do not assume any particular constraint
in the problem setup or in the meaning of each of the components of ut. As
a very simple example, however, we could imagine to have a particle moving
on a plane, and to denote by xt ∈ R

2 its position at time t. The motor
command ut ∈ R

2 could represent the movement that the particle makes
during the t-th time step. In this case, the effect of the motor command
would simply be xt+1 = xt + ut. In general, we have that the state of the
particle at time t + 1 is a function of xt and ut, i.e. xt+1 = f(xt, ut).

The behavioral rule we propose can be formalized in a straightforward
manner in a completely general way as well. Denoting by ui

t the i-th compo-
nent of the motor command at time t, the same component at time t + 1 is
given by:

ui
t+1 =

{

ui
t + ηiR if ∆At ≥ 0

random selection otherwise
. (1)
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Where R ∼ N (0, 1) is a random variable and ∆At expresses how much the
particle improved its state during the t-th timestep. For instance, in a goal
reaching setup, ∆At could express how much the particle got closer to its
target. In the case of a living organism, ∆At could represent the variation
in the concentration of nutrients.

Some examples of the emergent behavior of a particle that tries to reach
a goal following the rule are reported in Fig. 1. In the first panel, the initial
direction is quite skewed compared to the optimal direction. Thanks to the
random perturbations, by the third step the direction is identified as a bad
direction and a new heading is chosen at random. The second panel shows a
case in which the initial direction is bad, and a good direction is found only
after changing the direction randomly three times. In the third panel, the
initial direction is strongly skewed compared to the optimal one, and it is
identified as a bad direction by the second step. The newly chosen direction
is quite skewed as well, and identified as such by the seventh step. At this
point, a good direction is chosen and kept (with small perturbation) until the
last step. Intuitively, the random perturbations “increase the sensitivity” of
the particle, by letting it identify strongly skewed directions, even if it only
receives a binary information telling whether during the last time step it got
closer to the goal or not.

Actually, by using this extremely simple behavioral rule, behavior changes
are controlled only by modulating the level of random perturbations. In
particular, using solely the binary information given by the sign of ∆A, the
control algorithm either applies a small perturbation that leads to a SR effect
or changes the motor command in a completely stochastic manner.

If no perturbations are introduced (ηi = 0), then the binary evaluation
can only correspond directly to “keeping” or “changing” the motor command
ut. In such a case, the time-series profile of ut will consist in a series of abrupt
command changes followed by periods in which the motor command is kept
constant. This kind of behavior can be inefficient since the same motor
command can be kept for a long time even if the improvement to the particle
conditions (e.g. the decrease in the distance to the goal, increase of the
nutrient concentration, etc.) is very limited. Conversely, large perturbation
levels can make the behavior of Eq. 1 very close to a random walk, giving
in general very poor performances. Intuitively, therefore, there exists an
opportune level of random perturbations in the between, for which on the one
hand the probability of keeping using inefficient motor commands is decreased
and on the other hand the frequency by which a new motor command is

5



8 8.5 9 9.5 10 10.5 11
8

8.5

9

9.5

10

10.5

11

Start

1

2

34
56

7

8

9

10

(a)

8 8.5 9 9.5 10 10.5 11
8

8.5

9

9.5

10

10.5

11

Start
1

2

3
4

5
6

7

8

9

10

(b)

8 8.5 9 9.5 10 10.5 11
8

8.5

9

9.5

10

10.5

11

Start

1

2
3

4

5

6

7

8

9

10

(c)

Figure 1: Examples of trajectories taken by a particle moving according to the rule pre-
sented. The particle is initially located in [10, 10]T , and takes 10 steps of length 1, aiming
at a goal (not displayed) located in [0, 0]T . When the particle got closer to the goal (white
arrow), a small perturbation was added to the particle direction. When the particle got
further from the goal (filled arrow), a new random direction was taken. Points at the same
distance from the goal (contour lines) are shown for clarity.
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selected is not excessive. Figure 2 reports a concrete example. The position
of a particle xt is initially set to xt = [1, 1]T and updated by xt+1 = xt + s ·
[cos(ut), sin(ut)]

T , ut ∈ R, xt ∈ R
2, t ∈ N, s = 10−3, where ut is determined

by our simple behavioral rule and ∆At expresses how much the robot got
closer to the goal. In practice, this setup could correspond to the movement
of a holonomic robot, i.e. a robot that can move in any direction thanks to
an opportune configuration of the wheels.

The top panel reports the average distance traveled toward the goal in
103 steps for different values of η. We notice that the curve assumes the
typical shape of a SR effect.

In this paper the behavioral rule inspired by bacteria chemotaxis reported
in Eq. 1 will be analyzed by simple statistical models. In particular, sec-
tion 3.1 will show how the performance increase obtained for an appropriate
random perturbation η can be explained by a change in the distribution of
the directions taken by the particle.

Section 3.2 will report an analysis of the behavior of a particle that moves
according to the rule in simple continuous scalar potential fields A(x), which
could represent the food concentration for a bacteria or an artificial potential
field for a robot. It will be shown that the expected value of the movement
orientation is equal to the steepest gradient at each time step, although
from Eq. 1 it is clear that the algorithm considers only the sign of ∆At =
A(xt)−A(xt−1), i.e. it takes as input solely a binary information expressing
whether in the previous time step the particle improved its state or not.

Section 4 will present the results of Monte Carlo simulations of particles
that move on a potential field A(x) controlled by Eq. 1. We compute the
mutual information between the potential field A(x) and the spatial distribu-
tion of the particles, and show that the mutual information can be maximized
with appropriate levels of η.

Finally, section 5 will summarize the paper and highlight future research
directions.

3. Markov Model trajectory simulation

In this section we will present the Markov chain models for the movement
of a particle over simple potential fields. In particular, we will analyze the
direction taken by a particle moving in a two dimensional plane in two cases.
The first case involves a linear potential field that increases along the hori-
zontal axis and assumes the same value over the vertical axis. In the second
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Figure 2: Performance for different perturbation magnitudes. The top panel reports the
performances for different values of η. The performance is measured as the distance
traveled toward the goal in 103 time steps, averaged over 106 simulations. The bottom
panels report examples of trajectories obtained for different values of η. Precisely, the first
trajectory was obtained for a low perturbation level, η = 0.0056, the second trajectory
corresponds to an opportune level of perturbation, η = 0.56 and finally the bottom right
panel reports a trajectory generated with η = 0.3.
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Figure 3: The schematic representation of the Markov model used to investigate the prob-
ability of the directions taken on a linearly increasing potential field. The model represents
a particle that moves on a ramp-shaped potential field by taking steps of constant length
s with angle α to the horizontal (optimal) direction. The N states represent the directions
taken and can be assumed to be located equally spaced on a circle centered at the current
particle position.

case, the potential field is given by a Gaussian centered in the origin, i.e.

A(x) = exp
{

−x
T Σx

}

(2)

where Σ is a positive definite matrix. We analyze the behavior for two
different Σ matrices, and show that in both cases the average trajectory
corresponds to the steepest gradient.

3.1. Ramp shaped potential field model

In order to test the direction taken by a particle that moves according
to Eq. 1, let us derive a Markov model that describes the case of a particle
moving over a potential field shaped as a ramp, i.e. a potential field that
increases linearly along the horizontal axis and assumes the same value along
the vertical axis, A(x) = x1.

Fig.3 provides an illustration of the Markov model.
The direction that the particle can assume is discretized in a set of N

possible states, ideally located on a circle centered at the particle position.
Each state j can therefore be imagined to be associated to the vector x

(j) =
[cos(2πj/N) sin(2πj/N)]T , 0 ≤ j < N .

The states can be divided in two groups, S− and S+, respectively one
corresponding to the states with a lower potential value (the ones ideally on
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the “left” of the current position, i.e. having x
(j)
1 positive) and the other cor-

responding to the states representing points with a higher or equal potential
value. According to Eq. 1, when the potential increases, the next state is ob-
tained as a perturbation of the current state. When the potential decreases,
the state is chosen completely randomly. The transition probability P (i, j)
between a state i and a state j was therefore set as

P (i, j) =

{

1/N if i ∈ S−

∫ 2π(j−i)/N+π/N

2π(j−i)/N−π/N
f(θ)dθ if i ∈ S+

. (3)

where f(θ) is the Von Mises distribution centered in 0 (µ = 0). The sta-
tionary distributions for N = 100 and for several values of the concentration
parameter κ (κ = 1/η2) of the Van Mises distribution were calculated.

Remembering that the states represent different directions and that there-
fore their stationary probability actually approximates the probability den-
sity function of the various directions, it is possible to define the performance
obtained for a certain value of η as

∑N−1
j=0 P (j)x

(j)
1 , i.e. as the expected value

of the potential value increase. The first panel of Fig. 4 shows the perfor-
mance for different perturbation levels η. We notice that the performance
is always positive, i.e. despite its simplicity, the behavioral rule of Eq. 1 is
able to bring the particles to increasing potential values. More interestingly,
it is possible to observe a typical SR effect, with the performance increasing
as long as the perturbation is increased until a peak is reached for η ≈ 0.04,
after which increasing the perturbation level causes a performance decrease.

Observing the stationary distributions in detail, it is possible to have a
better idea of the actual reason of the performance increase and the subse-
quent decrease when increasing the value of η. Expressly, for very low values
of η, the distribution of the directions taken is approximately uniform, i.e. the
probability assumes essentially the same value for all the states in S+ and
0 for the states in S−. The distribution becomes more and more peaky,
with the peak centered at the optimal direction, when the value of η is in-
creased until its optimal value, as shown in the second panel of Fig. 4. After
reaching this point, increasing the perturbation level makes the distribution
mass spreads over all the states, including the ones in S−, with a consequent
decrease of the probability of the states in S+. As explained informally in
the introduction and reported in Fig. 2, the model shows quantitatively that
actually

10



• for low values of η, the probability of directions with low, positive
performance is high.

• for an appropriate level of η, the probabilities of choosing suboptimal
directions is decreased in favor of directions that lead to higher perfor-
mances.

• an excessive perturbation level spreads the probability over all the di-
rections, including the ones with low performance.

Observing the probability densities obtained, it is easy to see that the
probability distribution shapes are different for η values smaller or higher
than the optimal value. This provides an intuitive reason for the asymmetry
of the performance curve reported in Fig. 4(a).

Direct inspection of the transition probabilities also provides insights on
the mechanism underlying the SR effect observed in the execution of the
behavioral rule specified by Eq 1. In particular, observing the transition
probabilities among states in S+ that lead to small potential value increases
and states in S− that lead to small potential value decreases, it results that
the transition probabilities from states in S+ to states in S− are higher than
the probabilities of the opposite transitions from states in S− to states in S+.
In other terms, the model suggests that with optimal values of η it is easy
to detect and leave states with low performance thanks to the transition to
states in S− but it is difficult to enter those low performance states.

This observation allows us to derive further considerations. The behav-
ioral rule in Eq. 1 imposes choosing the next motor command (direction)
completely randomly as soon as the potential field value decreases, even
slightly. This may appear as a too simple rule, and better performances
would be expected by modulation of the perturbation level, with higher per-
turbations levels for stronger potential decreases. However, such smooth
transitions would prevent the beneficial asymmetry of the transition prob-
abilities described here, with a consequent performance decrease, as can be
readily shown with Monte Carlo simulations.

3.2. Gaussian shaped potential field model

In order to model a setting closer to the bacteria chemotaxis or robot
task reaching, let us consider a particle that moves in a two-dimensional
plane, where a Gaussian shaped potential field is defined. This potential
field could represent, for instance, the concentration of a certain nutrient at
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Figure 4: Results for the linearly increasing potential field. The first panel presents the
relationship between the size of noise η and the performance, defined as the expected value
of the potential field value increase. The second and third panel show several stationary
distributions for different noise sizes η. In particular, the second panel shows distributions
with a perturbation level lower than the optimal. The distributions become more and
more concentrated to states with high performance (small deviations from the optimal
angle) as the perturbation level gets closer to the optimal value. The third panel shows
the stationary distributions for values of η higher than the optimal. By increasing the
value of η, the stationary distribution probability is spreads more and more among the
states. This decreases the bias toward the states with high performances, that is obtained
for appropriate (lower) perturbation levels.

12



Figure 5: Schema of the Markov Model used to investigate the trajectories of the particles
over a Gaussian field. The states are imagined to be placed over a grid and the movement
of the particles is approximated by a second order Markov Model. Since the behavior
depends on whether the value of the potential field increased in the previous step or not,
a second order Markov Model is used.

every point of the plane, with the peak located at the nutrient source. Let
us discretize the space plane into a grid, and assume that each state of the
Markov chain represents a cell of the grid. To keep things simple, let us also
assume that the area where the particle can move is delimited by a square
barrier, so that the number of grid cells (which is also the number of states)
can be considered finite. Since the probability of transitioning from a state
j to a state k depends on the direction the particle had when entering j,
the natural representation of the setup is by a second order Markov Chain.
In other terms, it is intuitive to define the transition probability P (i, j, k)
of being at state k at time t + 1 if the state at time t is j and the state at
time t − 1 is i. These transition probabilities can be readily computed from
the behavioral rule equation. Particular care must be taken when the state
i is on the boundary, i.e. when it corresponds to a cell next to the barrier.
In this case, we assume that if the particle tries to overcome the barrier, it
simply remains in the same state.

More formally, to define a Markov model of the setup, let us assume the
Gaussian to be centered at the origin of a 2D Cartesian system, A(x) =
exp(−x

T Σx) and consider the region of the first quadrant defined by 0 ≤
x1 ≤ D, 0 ≤ x2 ≤ D, D ∈ R. Let us discretize this region in N square areas
of side D/N1/2, and model each region by a state. Fig.5 presents a schematic
representation of the Markov model.

Let us then approximate the behavior of Eq. 1 as transitions between
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the states placed on this discrete grid. In particular, let us denote by x(i)

the ideal location of state i on the plane. The transition probability from a
certain state j to a state k 6= j is assumed to be non zero only for the Moore
neighbors1, i.e. the states with Chebyshev distance 1,

∥

∥

x
(j) − x

(k)
∥

∥

∞

= 1.
Let us denote by F the set of the states of the boundary, i.e. the ones for
which one of the coordinates of the ideal location is 0 or D. The transition
from a state to itself is considered to be zero for all the states that do not lie
on the boundary. For the states in F , the probability of the self transition is
set to the sum of the transition probabilities to states that would lie outside
the considered region. Let us finally define M (j) as the number of states
(inside the region) that are Moore neighbors of j, which is 8 for j /∈ F . With
these assumptions, the probability of the transition from a state i to a state
j and the subsequent transition to a state k can be approximated by

P (i, j, k) =






















∫ a+π/8

a−π/8
f(θ)dθ ifj 6= k ∧ i 6= j ∧ A(x(i)) ≥ A(x(j))

1
M (j) ifj 6= k ∧

(

i = j ∨ A(x(i)) < A(x(j))
)

1
8−M (j) ifj = k ∧ j ∈ F

0 otherwise

where a = arccos((x(j) − x
(i)) · (x(k) − x

(j))) and again f(θ) is the Von
Mises distribution centered in 0 (µ = 0). The evolution of the distribution
over 200 steps was computed for κ = 1/η2 = 0.033. N = 400 states were
used to ideally represent square locations set at [0.5 + p, 0.5 + q], 0 ≤ p <
20, 0 ≤ q < 20, p, q ∈ N. The initial distribution was set to simulate all
particles in the top right corner, i.e. denoting by c the state on the top-right
corner (x(c) = [19.5, 19.5]T ) the initial probability was set to P (c, c) = 1 and
P (i, j) = 0 ∀i 6= c ∨ j 6= c.

In order to study the effect of the potential field A on the movement
of the particles the calculation was performed using two different Gaussian
potential fields. In particular, we tested two setups A(x) = exp

(

−x
T Σx

)

1The model ignores that not all the 8 Moore neighbors are at the same Euclidean
distance, i.e. that the ones placed diagonally have a distance

√
2 times bigger. The model

can be refined by imagining the states located on an hexagonal grid. Since the results are
essentially the same, we chose to present the simplest model.
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with Σ = Σ1 =

[

1.5 0
0 1.5

]

and Σ = Σ2 =

[

4 0
1 1.5

]

, respectively.

Figure 6 reports the results. Expressly, the expected value for the position
of the particles x̄t =

∑

k x
(k)

∑

i

∑

j P (i, j, k) at each time step was calculated
and highlighted in the two panels. For clarity, the panels also reports contour
lines of the potential fields as well as the trajectory obtained joining the
ideal location of the expected positions. It clearly appears that the expected
trajectory is an approximations of the trajectory obtained by following the
steepest gradient. This suggests us that with continuous potential fields,
with sufficiently small steps, the behavioral rule of Eq. 1 should be able
generate trajectories that approximate the gradient descent, even if the only
information used by the algorithm is a binary temporal derivative. Obviously
further investigations are necessary to prove the generality of this result.

4. Mutual Information

As stated in the introduction, the SR effect reported for the behavioral
rule examined in this paper can also be observed by computing the mutual in-
formation between the potential field and the spatial distribution of particles
that move according to of Eq. 1.

Expressly, let us imagine to have the two Gaussian potential fields pre-
sented in the previous section. Again, let us subdivide the region of the
first quadrant defined by 0 ≤ x1 ≤ D, 0 ≤ x2 ≤ D, D ∈ R, in N square
subregions of side D/N1/2, and for each subregion i let us denote by x(i)

the coordinates of its center. Assume the potential field values to be quan-
tized uniformly in QA levels. Denote by Ā(x(i)) the quantized value of the
potential field at x(i). Let us define PA(α) as the probability that Ā(x(i))
is α when the state i is chosen uniformly among the subregions. Clearly
PA(α) =

∣

∣{i : Ā(x(i)) = α}
∣

∣ /N , where
∣

∣{i : Ā(x(i)) = α}
∣

∣ is the number of
subregions for which the quantized value of the potential value in the center
is α .

Imagine then to have particles that, as in the previous section, start in
the top right corner of the region and move over the potential field according
to Eq. 1. The spatial distribution of the particles among the N square areas
is intuitively correlated to the potential value. In particular, let us assume
to denote by Pt,i the probability of a particle being in the subregion i at the
t-th time step. As done for the potential field values, for simplicity let us
quantize evenly these probability values over QC levels, and denote by P̄t,i this
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Figure 6: Results of the second order Markov models that represent Gaussian potential

fields. The first panel reports the results for Σ1 =

[

1.5 0
0 1.5

]

and the second one

refers to Σ2 =

[

4 0
1 1.5

]

. The expected location of the particles at different steps of

the Markov chain are reported by blue dots, connected together by a blue line for clarity.
Contour lines of the potential field are reported as well. The expected values of the
positions taken over time by the particle approximate the steepest gradient in both cases.

16



quantized values. Similarly to what previously done, let us denote by Pt,C(γ)
the probability that the quantized value of Pt,i is γ when i is chosen uniformly
among the subregions. Finally, let us denote by Pt(α, γ) the probability that
A(x(i)) = α and Pt,i = γ when a subregion i is chosen uniformly among
the subregions. Given these definitions, the mutual information between the
potential field and the spatial distributions of the particles can be expressed
as

It =
∑

α

∑

γ

Pt(α, γ) · log2

(

Pt(α, γ)

PA(α)Pt,C(γ)

)

Using the second order Markov Model presented in the previous section
it is possible to readily obtain quantitative results on the relationship be-
tween the noise level η and the mutual information defined here. However
memory constraints would impose a very coarse subdivision of the regions
for any trivial implementation of the chain. We therefore chose to estimate
the probabilities using a Monte Carlo simulation. In particular, the parti-
cles were assumed to start at x(c) = [19.5, 19.5]T and to move by the vector
ut ∈ R

2, where the vector is selected using Eq. 1 and subsequently normalized
as ut/ ‖ut‖.

Results were obtained by simulating 104 particles and observing their
distribution over N = 100 × 100 = 104 subregions at time t = 35. The dis-
cretizations were performed into QA = Qc = 100 levels. Figure 7 reports the
mutual information obtained for the two Gaussian potential fields under dif-
ferent magnitudes of the perturbation level. The mutual information curves
clearly exhibit a SR effect, with a peak located at approximately η = 0.24
for the first potential field and η = 0.2 for the second one.

Once more we find a quantitative confirmation that an opportune level of
random perturbation increases the performance of our minimalistic behav-
ioral rule. This increase can be conceptually thought as an increase in the
ability of estimating the shape of the potential field from the knowledge of
the temporal derivative. The generality of the results will be shown in future
works, for instance by the computation of the relationship between random
perturbation and mutual information of particle that move over more com-
plex potential fields.

5. Conclusion

In this paper, we suggested the possibility that chemotaxis, which is a
primitive and essential behavior found in bacteria, could actually be exploit-
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Figure 7: Mutual information for different values of η. The top panel reports the results

for Σ1 =

[

1.5 0
0 1.5

]

and the bottom one for Σ2 =

[

4 0
1 1.5

]

. For some perturbation

levels an error bar is used to indicate the standard deviation, estimated by repeating the
experiment 10 times.
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ing stochastic resonance, and not just be a behavior robust to noise. In order
to support this hypothesis, the paper proposes a very simple behavioral rule
that could be used to model the chemotactic behavior at a very abstract level.
Results show that the application of this rule presents a stochastic resonant
behavior, i.e. the addition of a random perturbation of opportune magnitude
can improve the performances. Statistical models for the movement of par-
ticles according to this rule over simple potential fields were presented. In
particular a linearly increasing potential field and Gaussian potential fields
were taken into consideration.

More specifically, we showed that particles moving according to our be-
havioral rule move toward increasing potential values although the only infor-
mation taken as input is the sign of the temporal difference in the potential
value. We showed that the performance can be enhanced by random pertur-
bations of adequate magnitude. A Markov chain model that explains this
performance increase in terms of a change of the probability density function
of the directions taken by the particles was presented. Furthermore it was
suggested by two simple examples that the expected value of the trajectory
taken by our algorithm could actually correspond to the steepest gradient.

The SR was studied from the point of view of mutual information between
the potential field and the spatial distribution of particles that move accord-
ing to the proposed behavioral rule. Results showed that, as expected, the
mutual information increases for an opportune random perturbation magni-
tude.

The modeling of chemotaxis provided by our rule is very abstract and far
from the complexity of chemical reactions arising in real diffusion of nutrients
and their sensing in bacteria. We cannot therefore claim with certainty that
SR is exploited in chemotaxis, although the results here presented seem to
suggest this possibility.

Future works will need to generalize the results presented in this paper.
In particular, in section 3.1 it was highlighted that choosing the following di-
rection completely randomly as soon as the potential decreases even slightly
yields higher performances than increasing smoothly the perturbation magni-
tude as the temporal derivative of the potential fields becomes more strongly
negative. Providing a formal proof and identifying the conditions for the
optimality of the current choice appears to be a very interesting topic. Sim-
ilarly, it appears worth investigating the possibility of deriving analytically
the conditions for which the expected values of the trajectory generated by
the behavioral rule coincides with the steepest gradient trajectories when the
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length of the steps tends to 0. Finally, one interesting point to tackle is to
analyze whether the performance increase observed can be explained solely
by an increase of the sensitivity of the temporal derivative used by the algo-
rithm, or if the SR effect observed is of a type fundamentally different from
the SR observed in sensors with thresholds.

The results of this paper show natural applicability in the robotics field
as well. In fact, the behavioral rule presented in the paper constitutes an
extremely simple adaptive behavioral rule that is applicable in a great vari-
ety of setups thanks to the limited information required by the algorithm.
The minimal requirements of the rule suggest the possibility of using it as
a bootstrap algorithm for more advanced learning methods. Indeed, many
learning algorithms require knowledge on the structure of the sensory infor-
mation, and using this behavioral rule to acquire such knowledge appears as
an interesting possibility that will be analyzed in future works.
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