

Biased Random Walk を用いた車輪移動型ロボットのロバストな制御手法の提案

ダーラリベラ・ファビオ(パドバ大学)
 池本 周平(大阪大学)
 港 隆史(JST ERATO)
 中村 泰(大阪大学)
 石黒 浩(大阪大学、JST ERATO)
 メネガッティ・エマヌエレ(パドバ大学)

http://www.nasa.gov/

- Space exploration or forested paths require robot robustness
- Need to cope with damages
 - design of recovery
 behaviors and fault
 detection are difficult

Escherichia Coli Random Walk

E. Coli rotates CW/CCW direction

 Flagella are aligned in a single bundle, swim in a straight line

 Flagella bundle is broke apart, tumble in place, random direction change

- Two rotations alternated
- Positive attractants (food) gradient
 - → longer straight swims (CCW rotation)
- Biased random walk toward attractants

E. Coli inspired robot navigation

- A. Dhariwal, G. Sukhatme and A. Requicha, Bacterium-inspired Robots for Environmental Monitoring, ICRA 2004
 - gradient descent is faster for tracking a single source, but random walk performs better in the presence of
 - Noisy sensors/actuators
 - Multiple/ Dissipative sources
 - Prevents ending up in local minima
- Two behaviors implemented
 - Go straight
 - Random rotation
- Hardware fault → target not reached
 - Example: encoder breaks
 - →wheel rotates in the opposite direction
 - → "go forward" becomes "spinning on itself"

Control space biased RW

 Biased random walk in the motor command space → appropriate behaviors that exploit the working hardware are found

Terms

u Control input (motor velocities)

f(u) bias

 η random variable

lpha bias term scaling constant

eta random term scaling constant

x sensory information (state)

A(x) Activity: state dependent bias term weight

Control equations

Biased random walk

$$\dot{u} = \alpha A(x) f(u) + \beta \eta$$

Bias term

$$A(x) = sgn(\frac{dx}{dt})$$

$$f(u) = \frac{u}{\|u\|}$$

Intuitive meaning:

Conditions improved

→keep the same motor command

Hardware damage robustness

Experimental setup

Robot: simulated mobile robot with two independent wheels and an omnidirectional camera

Task: reach a red hemisphere

Sensory information: number of red

pixels in the camera image

4 simulated hardware faults

Change in the size of a wheel

Change of the rotation axis of a wheel

Uncontrollability of a wheel

Obscuration of 20% of the camera

- The robot is able to reach the target in all the cases
- An optimal ratio between the noise and the signal exists
- This ratio depends on the hardware and environment conditions

Sensor noise robustness

Experimental setup

Robot: real mobile robot equipped with an omnidirectional camera

Task: Reach a red blanket

Sensory information: Number of red pixels in the camera image

B12 mobile robot

Omnidirectional camera

Reaching in a real environment

- The robot is able to reach the target even given the really noisy input information
 - Can be used for real world problems

Conclusions

- Biased random walk is a very robust control method when applied in the control space
- Verified in a target reaching task
 - Robust to hardware damages
 - Robust to sensor noise
- The performance depends just on the ratio of the two scaling factors α and β
 - The ratio is different for different hardware conditions

Future works

- Automatically determine the optimal α/β ratio
- Compare the performance of Levy walk to Brownian motion
- Extend the approach to target reaching with obstacle avoidance