
Humanoid motion representation by sensory state transitions

Fabio DallaLibera∗, Takashi Minato†, Hiroshi Ishiguro†‡, Ademar Ferreira§, Enrico Pagello∗, Emanuele Menegatti∗

∗ Intelligent Autonomous Systems Laboratory, Department of Information Engineering (DEI),

Faculty of Engineering, University of Padua, Via Gradenigo 6/a, I-35131 Padova, Italy
† ERATO, Japan Science and Technology Agency,

Osaka University, Suita, Osaka, 565-0871, Japan
‡ Department of Adaptive Machine Systems,

Osaka University, Suita, Osaka, 565-0871 Japan
§ Departamento de Engenharia de Telecomunicações e Controle,

Universidade de São Paulo, São Paulo, 61548, Brasil

Abstract—Given the complexity and the high number of
degrees of freedom humanoid robot motions often are generated
off-line, stored in the robot memory and then reproduced. In
the simplest cases motor commands are just replayed in open-
loop (i.e. feed-forward), in more advanced implementations few
parameters are changed on fly to adapt the motion to the exter-
nal conditions. Indeed, several authors proposed a large variety
of techniques to exploit the input from sensory feedback to
modify a reference trajectory, in order to cope with environment
changes and disturbances. In this paper, we propose a motion
representation for humanoid robots that includes the sensory
feedback information in the motion representation itself. This
motion description allows stabilization against disturbances
and environmental changes, but does not require any design
or tuning of the relationships between sensory inputs and
movement modification. We present experimental results on a
simulated small humanoid robot equipped with motor encoders
and touch sensors covering the whole body.

Index Terms—Humanoid robot, robot motion, motion repre-
sentation

I. INTRODUCTION

Generation of humanoid robot motions is a complex task,

due to the high number of degrees of freedom, usually 20 or

more. Furthermore in the case of small humanoid robots the

on board computing power is often quite limited so usually

at least part of the motion is generated off-line. The most

trivial approach consists of precomputing (by planning [1],

optimization of parametric trajectories [2], [3], [4], motion

retargetting of human motions [5] or design from scratch [6])

the joint trajectories or torques and replaying them ignoring

sensory feedback [7]. Despite its disadvantages, feed-forward

control is still largely employed for small humanoid robots,

whose stability is usually improved by large footprints and

a low center of mass position.

For tasks like walking [8], running [9] or crawling [10]

specific techniques to exploit the sensory feedback in order

to improve the robustness were developed. One commonly

used approach is to modify the robot movement to control

the Zero Movement Point [11], with the complexity of the

controller ranging from the injection of torque into the ankle

joints [12] to whole body movements [13]. These techniques

allow robots which would otherwise be too unstable to be

stabilized [14].

Another, biologically inspired approach consists of gener-

ating the motion using a dynamical system, termed as Central

Patter Generator [15], [16]. Usually CPGs are obtained by

the interconnection of oscillators, which in turn often consist

of an extensor and a flexor neuron pair [15] that controls

one of the actuators. In this case the motion is implicitly

described by the weight of the connections between the

neurons (appropriate weights are usually set automatically by

the policy gradient [16] or genetic algorithms [15]). Adap-

tation to the environment is obtained by interconnecting,

with proper weights, the sensory inputs to the neurons that

generate the motion: this feedback entrains the robot in stable

limit cycles that depend both on the robot structure and the

environment. A recent, very appealing approach based on

dynamical systems can be found in [17] while [18] shows

how locally weighted regression can be used to exploit

demonstrations to generate on-line a suitable movements for

a large range of situations.

As can easily be imagined, generally speaking employing

the feedback improves the performance over open-loop [19]

playback. In short, with open-loop the only information

available when taking actions is the internal representation of

time. Conversely, using sensory inputs the control algorithm

can have a more complete knowledge of the current state

and can take appropriate actions to achieve the desired robot

state.

This anyway requires a design (or at least tuning) of

the relations between the sensory inputs and the control

action taken. The approaches taken are often both strongly

task and robot dependent. Our aim is to devise a technique

that exploits the information coming from the sensors to

improve the system robustness. Obviously any comparison

with specifically designed controllers (e.g. ZMP based) will

be omitted, since we can easily guess that the task and robot

specific knowledge exploited in the design phase can strongly

improve the performance of those algorithms compared to

our completely general technique. To be more precise, our

goal is to design a simple, task independent technique that



corrects deviations from the expected sensory inputs of

essentially stable systems due, for instance, to environmental

changes. Drastic changes of the movement, inverse dynamics

computation or complete replannings such as using the hands

for support during walking [20] are outside of our scope. We

therefore assume to have perturbations in a range such that

trying to track the sensory states is sufficient to stabilize the

motion.

Specifically, we assume the robot to have the body covered

by force sensors, as in [21] and the actuators equipped

with potentiometers/encoders. Our approach consists in two

phases. In a first, off-line phase we play the motion in open-

loop in a reference environment. We record the sensory

information and store the transitions between sensory states

as a graph. This graph becomes our motion representation.

In a second, online phase, we use the information contained

in the graph to replay the motion.

This is very similar to the StateNet approach [22] and

presents the same advantages (quantitative comparability

between the states, easily extendable robot’s knowledge rep-

resentation, online search of correction strategies). However

while in [22] a transition is a complete movement like

“Stand up” our edges represent small state transitions and so

a motion like standing up can be decomposed into dozens of

states. This difference in granularity reflects our aim to make

small corrections to cope with environment disturbances. In

fact [22] deals with complete behaviors and, for instance,

if the robot falls down while walking then it will initiate a

roll over, sit and stand up sequence. In our case we want

to restrict the recovery actions to small modifications of the

motion to respond to disturbances. The higher granularity

of the state transitions allows us to utilize noise to recover

from stuck conditions. For instance, if the robot gets stranded

while crawling on a rough terrain, making random perturba-

tions of the movements can help in escaping from the locking

condition. While with the StateNet framework a completely

different behavior (for instance, crawl backwards) could be

instantiated our approach will tend to generate a movement

very close to the original one. Drastic changes in the behavior

to escape from really critical conditions could be introduced

in our approach by an higher level decision level with the

role of switching the target behavior from crawling to, for

instance, sidestepping.

In section II we provide the details of the graph construc-

tion and exploitation. Section III reports results obtained by

experiments with a simulated robot. In detail the robustness

of the motion representation and the possibility to employ

noise to recover from stuck condition is tested simulating

the execution of a crawling motions under different condi-

tions. Simulation results show impressive improvements in

comparison to a classic open-loop feedforward playback. We

conclude in section IV by illustrating future works.

II. GRAPH REPRESENTATION

The idea of storing multiple execution of a motion as a

set of states is not new, and we can find examples both for

the Computer Graphics field [23], [24] and in the description

of robot behaviors [22]. Assuming we have a precomputed

motor command sequence we play it open-loop, sample the

sensory information and construct the graph. Specifically,

each node represents a hypercube in the sensory space, since

we assume two sensory states to be mapped to the same node

if their infinity norm1 distance does not exceed a threshold ∆
(in other terms a node corresponds to a point in the sensory

space with a confidence interval of size ∆). Each edge

represents a motor command that causes a transition between

states. Every edge is labeled by a weight that indicates the

number of times that the transition was executed in the off

line phase. In the online phase at each sampling time we

identify the node corresponding to the sensory information.

If the state belongs to one of the nodes identified in the off

line phase we just execute the transition with the highest

weight. If the node is unknown we determine the nearest

node explored in the off line phase and issue a command

that should bring the robot to that state. Note that since we

simply compare the postures of the two states and avoid

any dynamics consideration, the system is not guaranteed to

move to the desired state. As done in [22] we assume that

moving between close states has a strong success likelihood.

In case the resulting state is different from the planned one,

the system will simply search the closest known state in the

next step too.

This is an important constraint in the choice of the sensory

information contained in the nodes. In fact we need to be able

to estimate, on-line, a command able to bring the robot to

the desired state (nearest known node hypercube center). One

possible choice, which is what we actually did, is to include

proprioception information (state of the actuators, e.g. joint

angles) in the sensory state, so that the motor command to

be issued to reach the desired state can be obtained by a

transition from the current joint angles to the desired joint

angles.

A. Graph construction

Let us denote the nodes and the edges of the graph

G = {N, E} respectively by N = n1, . . . , nP and E =
e1, . . . , nQ where P is the number of nodes and Q the

number of edges. Let us then indicate using si the sensory

information corresponding to the center of the hypercube

defined by the node ni and by wj the weight of edge ej .

Initially the graphs consists of a single node, n0 correspond-

ing to the robot’s initial state s0 with no edges. The previous

node n∗ is initialized to n0. At each sampling instant we

apply the following algorithm

Read the sensory information ŝ

if ‖s∗ − ŝ‖
∞

> ∆ then

if nk such that ‖sk − ŝ‖
∞
≤ ∆ exists then

if edge ej between n∗ and nk then

wj ← wj + 1
else

1We chose to employ the infinity norm for its low computational cost.
Any other norm should also be valid.



Add edge eQ+1 between n∗ and nk

wQ+1 ← 1
end if

n∗ ← nk

else

Add node nP+1, a hypercube centered at ŝ

Add edge eQ+1 between n∗ and nP+1

wQ+1 ← 1
n∗ ← nP+1

end if

end if

Note that self loops are avoided by the first control of

the algorithm. In our implementation the motor command

information associated to edge ej from node nA to node nB

include a histogram of the time spent on node nA before

taking the transition between node nA and node nB . This

allows the representation of motions where the robot keeps

still for some time which would otherwise not be possible.

For simplicity we assume the sampling frequency to be

high and the value of ∆ to be small enough so that motor

commands can be approximated by linear transitions between

the angles stored in the nodes at the head and the tail of

the edges. Under these simplifications the motor command

associated with each edge can be simply derived by the angle

difference between the centers of the hypercubes of the head

and tail nodes. To avoid perceptual aliasing [25] occurring

if we had motions that contain repeated sub-movements, we

included time as state information stored in the nodes (note

that for periodic motions the time returns to 0 at every cycle).

Summarizing, the motion description we obtain from the off-

line phase is a graph where

• Nodes represent the robot state. Each node contains

information on

– joint angles (as measured by the simulated en-

coders)

– forces acquired by the tactile sensor (simulated

FSR that provide the perpendicular force applied

to each surface)

– time instant of the motion execution

• Edges represent state transitions. Each edge contains

information on

– the number of times the transition was taken (stored

as the node weight)

– a histogram of the time taken to perform the

transition

Given the heterogeneity of the units of the node, these are

normalized by normalizing factors. In detail, joint angles and

forces are divided by 3 times the standard deviation of the

sensor errors and the time instant by 50 ms (assuming this

is a lower bound under which no perceptual aliasing occur).

B. Motion reproduction

The graph obtained by the off-line phase constitutes a

robust motion representation that contains in a unified frame-

work sensory information together with motor commands.

During the motion execution, a “virtual time” is used to

avoid forcing the motion evolution to have the same period

as the trajectories used to generate the graph. To state it more

exactly when a motor command is issued the current time is

assumed to be the time of the target node, whether the target

state was actually reached or not. This virtual time is also

used to avoid loops: assume the robot is in state A and tries

to reach state B, but ends up in state C. Imagine then that B

is the closest known node from C, and that trying to reach B

makes the robot remain in state C. Forcing the algorithm to

choose the closest node with a time higher than the virtual

time is sufficient to avoid the robot to get stuck in such

loops. The simple algorithm used for motion reproduction at

each sensor sampling time is the following. t∗ denotes the

virtual time, while nt
i indicates the time of node ni. To allow

periodic motions, the transitions are accepted also toward

nodes with a highly smaller time, so that the motion can

“restart” (case or nt
i− t∗ < −Θ in the algorithm). The value

Θ is set to the 90% of the period in our implementation.

Read the sensory information ŝ

c← argi min ‖si − ŝ‖
∞

if ‖sc − ŝ‖
∞
≤ ∆ then

h← argj max{wj : ej departs from nc}
execute the motor command eh

t∗ ← nt
b where nb is the node pointed by eh

else

d← argi min ‖si − ŝ‖
∞

s.t. nt
i > t∗ or nt

i− t∗ < −Θ
issue a motor command to reach state sd

t∗ ← nt
d

end if

As described in the previous subsection, in our implemen-

tation each edge memorizes a histogram of the time spent

to execute the state transition. When edge ej is chosen the

reference angles sent to the motor’s PID controllers vary

(linearly) from the position specified in the tail node to the

position specified in the head node. The time over which

this variation is performed is equal to the mode of the time

statistics store in ej .

When the system is in a state not belonging to the

nodes generated during learning (else branch in the previous

algorithm), a motor command corresponding to a variation

between the current angles and the angles specified by the

desired state sc is issued. In this case the command spans

over a constant time TC (50 ms in the current implementa-

tion).

We can soon notice that it is be possible to prune the graph

before motion replaying, leaving a single outgoing edge from

every node (the one with the highest weight) and storing just

the mode instead of the complete waiting time statistics. In

this case, the complexity of the algorithm becomes O(P ),
i.e. linear in the number of nodes since at each sampling time

we need to search the closest node. In our experiments nodes

were always in the order of few hundreds, so the computation

is feasible with low computational power. If P increases

and the computation becomes too slow the Best Bin First

algorithm [26] can be employed.



(a) (b)

Fig. 1. VisiON 4G equipped with touch sensors and its simulation on rough terrain.

III. EXPERIMENT

The described algorithm has been tested by obtaining a

graph representation of a crawling motion performed by a

humanoid robot. The experiment was conducted by employ-

ing a simulator based on ODE2, that models the VisiON 4G,

a small 22-degrees of freedom humanoid robot produced by

VStone and equipped with touch sensors all over the body,

as visible in Fig. 1.

Specifically we developed a motion from scratch using a

frame based motion editor (i.e. the robot motion is defined as

a set of key-frames, that is, a set of instants in time for which

the position of each and every joint is provided). We executed

the motion 100 times on a flat terrain and constructed a graph

with the algorithm described in subsection II-A. Even if the

simulator does not include an explicit generation of sensor

noise, numerical errors and damping of the lateral oscillation

generated by the first step prevents the various executions

from being identical. The resulting graph, obtained for ∆ = 2
consisting of 66 nodes and 158 edges is reported in Fig. 2.

We then conducted three experiments

1) We verified whether the graph representation is able to

store the original, trajectory based representation

2) We verified the robustness of the approach under

several environmental changes

3) We added noise to the servomotor signals, in order to

get the robot unstuck on very rough terrains, and verify

that also in this case we can take advantage from the

graph representation over the feed-forward solution

We defined the crawling motion performance as the average

velocity of the robot. Expressly, since during the execution of

the crawling motion lateral swings are present and therefore

instantaneous velocity of the center of mass is not very

meaningful, we defined the velocity at time t as

v(t) =

∥

∥

∥

∫ T

τ=0
X(t− τ)dτ −

∫ 2T

τ=T
X(t− τ)dτ

∥

∥

∥

T

2http://www.ode.org

where X(t) is the (3D) position of the robot’s center of mass

at time t, T is a constant (4 seconds) and Euclidean norm is

used.

A. Motion replay

We verified practically that the graph representation is suf-

ficient to store the crawling motion, as well as other motions

like sitting down, turning over, crawl turning left and right.

In particular, unexpectedly, we could see that using the graph

representation strongly improves the performance even if the

environment used to replay the motion is identical to the one

used to construct the graph: the average velocity (measured

over 4 minutes) is 5.25 cm/s for the open loop execution

and 7.86 cm/s for the graph based approach (150%). This

is quite surprising if we consider that the motions was hand

tuned for this environment.

The performance improvement is due essentially to two

factors. First, oscillations are quickly damped using the

graph, in fact if we calculate the variance of the roll angle

during the motions we get 0.0084 rad2 for the open-loop

case and 0.0047 rad2 for the graph based control. Secondly,

the average crawling period is reduced. Both these effects are

due to “shortcuts” on the graph, which are performed when

the robot reaches unexpected states, that make the robot skip

small parts of the graph. Figure 4(a) shows the nodes and

paths visited in the online phase. Figure 3 shows part of the

graph, relative to the transition between states 53 and 5. For

instance the open-loop control visited states 53, 0, 54, 0, 1,

54, 55, 3, 63, 64, 63, 3, 2, 3, 4 and 5. The short loops that

start and end in states 0 and 3 lasted, respectively 6 and 39

milliseconds, and the complete transition between states 53

and 5 took 297 ms. Using the graph the robot arrived at state

53 and moved to state 54 (reached after 46 ms), planned to

go to state 0 but ended up in state 4 (at time 96 ms) and then

proceeded to state 5 (reached 158 ms after the reaching of

node 53). In this case, therefore, the small loop among nodes

3 63 and 64, that consists of nodes where the robot doesn’t



0

1

4

5
4

2

5
5

3

6
3

6
4

5

6

5
6

6
5

7

5
7

5
8

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0 2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
4

5
9

6
0

3
2

3
3

3
5

3
6 4
0

6
1

3
7

3
8

3
9

4
1

4
2

4
7

4
3

4
5

4
4

4
6

4
8 4
9

5
0

5
1

6
2

5
2

5
3

Fig. 2. Graph representation obtained for the crawling motion. The color
(hue) indicates the execution time (of the feed forward motion) for which
the node were created using the HSV scale.

move the motors but oscillate laterally due to the dynamics,

was skipped. This didn’t affect the motion, but, conversely,

improved the performance. Note that the inclusion of time

in the nodes to prevent state aliasing also prevents clamping

big loops that describe meaningful parts of the movement

(for example one complete step) since no “shortcuts” will

be created between nodes that have similar touch sensor and

angle information but very different times. However, future

works will investigate whether the assumption that “small”

loops can be neglected is true, and will possibly introduce

on-line learning that automatically identifies the necessary

loops.

B. Motion replay under different conditions

To verify the robustness of the approach we compared the

performance of the open loop motion replay and the graph

based execution under several environmental changes:

• Reduction of the friction coefficient with the floor to

the 10% of the reference value: open loop 4.84 cm/s,

graph based 8.12 cm/s (168%)

• Halve the robot’s weight: open loop 4.62 cm/s, graph

based 7.22 cm/s (156%)

• Walk on an ascending slope of 20 degrees: open loop

2.81 cm/s, graph based 5.79 cm/s (206%)

• Walk on rough terrain: open loop 0.54 cm/s, graph based

1.37 cm/s (249%)

Where the rough terrain (depicted in Fig.1) is obtained in

the following way:

1) construct a square grid of 50 cm interspaced points on

the floor

2) place a tile of 70*70*14 cm centered in each of the

grid points

3) apply a random translation on the X-Y (floor) plane

of each tile (uniformly distributed in the range [0, 30]
cm)

4) change the pitch and roll of each tile by a random angle

(uniformly distributed in the range [0, 3] degrees)

C. Addition of noise to avoid stuck conditions

The performances on very rough terrains like the one

described in the previous section can be strongly improved

if noise is added to the servomotor commands when the

robots gets stuck. We decided to add Gaussian noise with

standard deviation that is a decreasing function of velocity.

This is very similar to what happens in biological systems:

the actions taken are more and more deterministic the better

the conditions are and the more and the more stochastic

the worse the conditions are. For instance, E. Coli proceeds

alternating forward movements and random tumbles, and

decreases the frequency of random tumbles when the en-

vironment conditions are favorable [27], [28] (i.e. positive

gradients of nourishing chemicals). In detail we decided to

use a simple piecewise linear function to map velocities to

the noise standard deviation

η(v) =















α if v ≤ vα

α + v−vα

vβ−vα
∗ (β − α) if vα < v ≤ vβ

β +
v−vβ

vβ−vγ
∗ (γ − β) if vβ < v ≤ vγ

γ ifv > vγ

We determined a good set of values for this piecewise

function, namely α = 0.035, β = 0.014, γ = 0.0064,
vα = 3.8, vβ = 5.9 and vγ = 6.4 using a genetic algorithm

(population size 20, 50 generations). Units are cm/s for

velocities and radians for the standard deviation (we apply

noise to the motor target angle). Before executing each

motor command the robot’s velocity vt is evaluated (with

the definition of instantaneous velocity previously provided)

and the target angles are perturbed with Gaussian noise of

zero average and standard deviation η(vt). To have a fair

comparison between the graph based representation and the

open loop execution we measured the average state transition

time for the graph case and this resulted to be tT = 45ms.

We then played the open loop motion approximating it by

linear transitions (over time spans of tT = 45ms) between

angle postures, where in each interval the target posture is

given by the posture specified by the “nominal” trajectory

plus a noise given by the η(vT ) function. We repeated the

experiment for 30 times both for the open loop and graph

based representation, obtaining respectively mean velocities

of 1.2cm/s (standard deviation 0.94) and 1.9cm/s (standard

deviation 0.94) for the two cases.



Fig. 3. Part of the graph, with relative postures (each node is linked to a picture of the corresponding state by a dotted line).

IV. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a simple technique that intro-

duces sensory feedback in the representation of humanoid

robot motions to improve its robustness to environmental

changes. Expressly we presented a way to construct a graph

of state transitions off-line and how to use this representation

to generate motor commands on-line. We performed several

simulation experiments on a crawling motion that confirmed

this representation to be strongly more robust than a simple

feed-forward system. We also showed how simple addition

of noise, combined with the graph representation, can help

to recover the system from stall conditions. Tests on a real

VisiON 4G robot are being performed to test how the noise

of real sensors affects our approach.

The presented technique does not require any knowledge

of the robot’s structure or dynamics and should be com-

pletely general. Future works will need to test whether good

performances are achieved in other tasks as well, and how

much the tuning of the piecewise linear function that adds

noise to the system influences the task performances. We

do not believe the technique has better performances than

specifically designed controllers, e.g. ZMP based stabilizing

controllers. Nonetheless given the big difference in the per-

formance with respect to the open-loop system a comparison

with such controllers could be interesting.

We also need to investigate the performance in terms

of recovering time, i.e. for instance we could compare the

time required to bring the robot back to a known crawling

state after encountering an obstacle with our and with other

classical approaches. We furthermore belive our approach

helps robot damage since when unexpected collisions occur

the robot will try to bring itself to a known, safe state and

not just keep executing the motion in a feed forward manner.

Quantitative results will be provided in future works.

A possible improvement of the current system consist of

including learning during the motion execution, for instance

in order to adapt to a different environment. This could

be realized avoiding the graph pruning and updating the

graph structure during the on-line phase. However if such

modification is included care must be taken not to “forget”

the previously acquired knowledge because, for instance,

changes on the edge weights could prevent the robot from

executing parts of the motion. We will tackle on-line learning

(and the corresponding forgetting problem) in future works.

Another interesting extension of the work is to use the graph

for motion primitives [29] representation. In particular, we

can imagine different tasks sharing sub-paths on the graph.

Extracting and composing these common subparts could

be employed to automatically generate new motions from



0

1

4

54

2

55

3

63
64

5

6

56
65

7

57

58

8

9

1011

12

13

14

15

16
1718

19

20

21

22

23

24

25

26

27

28

29

30

31

34

59

60

66

32 33

35

69

36

40

61

37

38

39

67

41

42

47

43

45

44

46
48

49

50

51

62

52

53

68

(a)

0

1

4

54

2

55

3

63
64

5

6

56
65

7

57

58

8

9

1011

12

13

14

15

16
1718

19

20

21

22

23

24

25

26

27

28

29

30

31

34

59

60

70

32 33

35

36

40

61

37

38

39

41

42

47

43

45

44

46
48

49

50

51

62

52

53

(b)

0

1

4

54

2

55

3

63
64

5

6

56
65

7

57

58

8

9

1011

12

13

14

15

16
1718

19

20

21

22

23

24

25

26

27

28

29

30

31

34

59

60

71

32 33

35

36

40

61

37

38

39

41

42

47

43

45

44

46
48

49

50

51

62

52

53

(c)

0

1

4

54

2

55

3

63
64

5

6

56

75

65

7

57

58

8

9

1011

12

13

14

15

16
1718

19

20

21

22

23

24

25

26

27

28

29

30

79

31

34

59

60

32 33

35

69

36

40

61

37

38

39

67

41

42

47

43

45

44

46
48

49

50

51

62

52

78

53

73

74

77

72

76

(d)

0

1

4

54

113

2

55

3

63
64

5

6

56

75

92

102

103

140
151

152

154

158

65

7

57

58

85

97

98

105

137

148

8

9

1011

12

13

14

15

16
1718

19

20

21

22

23

24

25

26

27

28

29

30

79

107

130

31

34

59

60

80

125

168

32 33

35

69

81

120

126

128

36

40

61

121

37

38

39

41

87

88

145

171

42

47 82

95

110

153

43

45

44

46
48

93

139

149

49

83

84

94

100

122

156

166

50

51

101

111

136

160

62

52

78

112

157

169

53

91

123

155129

172

77

86

89

99

124

104

115

116

108

119

134

161

127

96

106

132
133

90

167

165

147

109

131

135

170

138

114150

117

118

164

146

141

163

142

143144 162

159

(e)

Fig. 4. States visited during the online phase. Filled nodes and solid line edges belong to the knowledge generated offline, while empty nodes are states
reached only in the online phase. Color (hue) indicates, using the HSV scale, the creation time of each node. Vivid color (high saturation) for the filled
nodes indicates that the node was visit on the online phase, faded color indicates that it was not. Panel (a) shows the data relative to the replay in conditions
identical to the offline phase, panel (b) the case of a different friction coefficient, panel (c) the case with the robot’s weight halved, panel (d) the case of
crawling over a slope and panel (e) the execution of the motion over rough terrain.



scratch,i.e., as done in [22], the graph could be used for

motion planning.

V. ACKNOWLEDGEMENTS

The authors would like to thank Richard Christopher Keely

for the comments on the first draft of the paper.

REFERENCES

[1] K. Harada, M. Morisawa, K. Miura, S. ichiro Nakaoka, K. Fujiwara,
and K. K. S. Kajita, “Kinodynamic gait planning for full-body
humanoid robots,” in 2008 IEEE/RSJ International Conference on

Intelligent Robots and Systems(IROS 2008), Nice, France, 2008, pp.
1544–1550.

[2] F. Yamasaki, K. Endo, H. Kitano, and M. Asada, “Acquisition of
humanoid walking motion using genetic algorithm - considering char-
acteristics of servo modules,” in 2002 IEEE International Conference

on Robotics and Automation (ICRA 2002), Washington, USA, 2002,
pp. 3123–3128.

[3] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning for
humanoid robotics,” in IEEE-RAS 3rd International Conference on

Humanoid Robots (Humanoids 2003), Karlsruhe, Germany, 2003.
[4] S. Iida, S. Kato, K. Kuwayama, T. Kunitachi, M. Kanoh, and

H. Itoh, “Humanoid robot control based on reinforcement learning,”
in Proceedings of the 2004 International Symposium on Micro-

Nanomechatronics and Human Science and The Fourth Symposium

Micro-Nanomechatronics for Information-Based Society, 2004, pp.
353–358.

[5] S. Nakaoka, A. Nakazawa, K. Yokoi, H. Hirukawa, and K. Ikeuchi,
“Generating whole body motions for a biped humanoid robot from
captured human dances,” in 2003 IEEE International Conference on

Robotics and Automation (ICRA 2003), Taipei, Taiwan, 2003, pp.
3905–3910.

[6] T. Wama, M. Higuchi, H. Sakamoto, and R. Nakatsu, “Realization
of tai-chi motion using a humanoid robot,” in IFIP Congress Topical

Sessions, R. Jacquart, Ed. Kluwer, 2004, pp. 59–64.
[7] K. D. Mombaur, H. G. Bock, J. P. Schlder, and R. W. Longman,

“Stable walking and running robots without feedback,” in Proceedings

of the 7th International Conference CLAWAR 2004, 2005, pp. 725–
735.

[8] Y. Okumura, T. Tawara, K. Endo, T. Furuta, and M. Shimizu,
“Realtime zmp compensation for biped walking robot using adaptive
inertia force control,” in 2003 IEEE/RSJ International Conference on

Intelligent Robots and Systems(IROS 2003), vol. 1, Las Vegas, USA,
2003, pp. 335–339.

[9] S. Kajita, K. Kaneko, M. Morisawa, S. Nakaoka, and H. Hirukawa,
“Zmp-based biped running enhanced by toe springs,” in 2007 IEEE

International Conference on Robotics and Automation (ICRA 2007),
Roma, Italy, 2007, pp. 3936–3969.

[10] F. Kanehiro, T. Yoshimi, S. Kajita, M. Morisawa, K. Fujiwara,
K. Harada, K. Kaneko, H. Hirukawa, and F. Tomita, “Whole body
locomotion planning of humanoid robots based on a 3d grid map,”
in 2005 IEEE International Conference on Robotics and Automation

(ICRA 2005), Barcelona, Spain, 2005, pp. 1072–1078.
[11] M. Vukobratovic and J.Stepanenko, “On the stability of anthropomor-

phic systems,” Mathematical Biosciences, vol. 15, pp. 1–37, 1972.
[12] V. Prahlad, G. Dip, and C. Meng-hwee, “Disturbance rejection by

online zmp compensation,” Robotica, vol. 26, pp. 9–17, 2008.
[13] T. Sugihara, Y. Nakamura, and H. Inoue, “Realtime humanoid motion

generation through zmp manipulation based on inverted pendulum
control,” in 2002 IEEE International Conference on Robotics and

Automation (ICRA 2002), Washington, USA, 2002, pp. 1404–1409.

[14] K. Yokoi, F. Kanehiro, K. Kaneko, S. Kajita, K. Fujiwara, and
H. Hirukawa, “Experimental study of humanoid robot hrp-1s,” The

International Journal of Robotics Research 2004, vol. 23, pp. 351–
362, 2004.

[15] H. Inada and K. Ishii, “Behavior generation of bipedal robot using
central pattern generator(cpg) (1st report: Cpg parameters searching
method by genetic algorithm),” in 2003 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems(IROS 2003), vol. 3, Las
Vegas, USA, 2003, pp. 2179–2184.

[16] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng,
“Learning cpg-based biped locomotion with a policy gradient method:
Application to a humanoid robot,” International Journal of Robotics

Research, vol. 27, no. 2, pp. 213–228, 2008.

[17] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor land-
scapes for learning motor primitives,” in NIPS, S. Becker, S. Thrun,
and K. Obermayer, Eds. MIT Press, 2002, pp. 1523–1530.

[18] A. Ude, M. Riley, B. Nemec, A. Kos, T. Asfour, and G. Cheng,
“Synthesizing goal-directed actions from a library of example move-
ments,” in IEEE-RAS 7th International Conference on Humanoid

Robots (Humanoids 2007), Pittsburg, USA, 2007, pp. 115–121.

[19] J. Baltes, J. Anderson, and S. McGrath, “Model-free active balancing
for humanoid robots,” in RoboCup 2008 Symposium, 2008.

[20] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid lo-
comotion planning,” in IEEE-RAS 5th International Conference on

Humanoid Robots (Humanoids 2005), Tsukuba, Japan, 2005, pp. 7–
12.

[21] T. Yoshikai, M. Hayashi, Y. Ishizaka, T. Sagisaka, and M. Inaba,
“Behavior integration for whole-body close interactions by a humanoid
with soft sensor flesh,” in IEEE-RAS 7th International Conference on

Humanoid Robots (Humanoids 2007), Pittsburg, USA, 2007.

[22] F. Kanehiro, M. Inaba, H. Inoue, and S. Hirai1, “Developmental
realization of whole-body humanoid behaviors based on statenet
architecture containing error recovery functions,” in IEEE-RAS 1st

International Conference on Humanoid Robots (Humanoids 2000),
Cambridge, USA, 2000.

[23] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM Trans-

actions on Graphics (SIGGRAPH2002), vol. 21, no. 3, pp. 473–482,
2002.

[24] H. Sidenbladh, M. J. Black, and L. Sigal, “Implicit probabilistic
models of human motion for synthesis and tracking,” in ECCV ’02:

Proceedings of the 7th European Conference on Computer Vision-Part

I. London, UK: Springer-Verlag, 2002, pp. 784–800.

[25] P. Crook and G. Hayes, “Learning in a state of confusion: Perceptual
aliasing in grid world navigation,” in Towards Intelligent Mobile

Robots 2003 (TIMR 2003), 4 th British Conference on (Mobile)

Robotics, 2003.

[26] J. Beis and D. G. Lowe, “Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces,” in Conference on

Computer Vision and Pattern Recognition, Puerto Rico, 1997, pp.
1000–1006.

[27] J. Adler, “The sensing of chemicals by bacteria,” Scientific American,
vol. 234, pp. 40–47, 1976.

[28] S. G. Nurzaman, Y. Matsumoto, Y. Nakamura, S. Koizumi, and
H. Ishiguro, “Yuragi-based adaptive searching behavior in mobile
robot: From bacterial chemotaxis to levy walk,” in 2008 IEEE In-

ternational Conference on Robotics and Biomimetics, 2008.

[29] O. C. Jenkins and M. J. Mataric, “Deriving action and behavior
primitives from human motion data,” in 2002 IEEE/RSJ International

Conference on Intelligent Robots and Systems(IROS 2002), Lausanne,
Switzerland, 2002, pp. 2551–2556.


