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Abstract

In the field of parallel manipulators, the possibility of changing assembly
mode without passing through a singular configuration is well known. This
kind of transitions was studied in detail for planar 3-DOF manipulators.
This paper focuses on 2-DOF parallel manipulators actuated by two RRR
legs and constrained to a 2-DOF motion by a passive leg. It first shows that
when the platform movement is constrained to rotations and translations
along a single direction, nonsingular assembly mode transitions are possible.
The direct and inverse kinematic problems of the mechanism are solved.
The singularity conditions are written in explicit form and geometrically
interpreted. Numerical examples of nonsingular assembly mode transitions
are then given. Subsequently, the paper proves that if the platform is instead
constrained to translational motions, nonsingular assembly mode transitions
become impossible. Remarks on the generalization of the results to a wider
class of 2-DOF planar manipulators are finally given.
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1. Introduction

In the last decades, parallel robots received growing attention. The high
power and accuracy that can be achieved with this kind of structures was
exploited in many contexts, ranging from their early application to flight
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simulators [1] and tire testing [2] to their more recent use in haptic devices [3]
or palletizing [4, 5].

Parallel manipulators are particularly interesting from a theoretical point
of view as well [6, 7, 8]. For many aspects, parallel manipulators turn out to
be dual to serial manipulators [9, 10], and this can often be explained by the
duality between twist and wrench [11]. One particularly interesting concept,
observed both in serial and parallel robots, is the possibility of executing
nonsingular transitions. It was shown that for some robots, it is possible to
pass from one inverse solution to the other without passing through a singular
configuration [12, 13]. This kind of transitions is possible in presence of a
triple solution, which, when projected over the workspace, appears as a cusp
point. For this reason, these robots are commonly called cuspidal [14].

A dual phenomenon can be observed for parallel robots. Transitions
between different assembly modes can occur without passing through direct
kinematic singularities [15, 16]. Also in this case, trajectories that circle cusps
in the joint space may correspond to movements that lead to nonsingular
transitions between different assembly modes [17]. We note that encircling a
cusp point is not the only possible way of obtaining a nonsingular transition
between different assembly modes. Indeed, it was shown that it may suffice
to encircle an α-curve in the joint space [18]. Nonsingular transitions have
both theoretical and practical importance. On the one hand, there may be a
strong desire to avoid these nonsingular transitions for being sure that given
an actuator configuration the joint configuration is unique, i.e. for remaining
in the same uniqueness domain [19]. On the other hand, it may be possible to
exploit nonsingular assembly mode transitions to enlarge the workspace [20].

Nonsingular assembly mode transitions were often studied in the case of
planar manipulators. These manipulators received particular attention [21,
22, 23, 24, 25, 26] because, besides the inherent interesting potential appli-
cation in planar motion systems [27], they can provide insights on the more
complex case of spatial manipulators [17].

The presence of nonsingular assembly mode transitions was deeply stud-
ied for 3−RPR manipulators [17, 28, 29, 30, 31]. Special attention was given
to the cases of equilateral platform [18], similar base and platform [32], and
congruent base and platform [33, 34]. The study of the nonsingular transi-
tions was often conducted by keeping one of the joints fixed [29, 27]. Recently,
a complete characterization of the cusp points in the 3-D joint space was pro-
vided as well [35]. Another commonly studied manipulator is the 3 − RRR
one [36], especially the one with equilateral base and platform [37]. Also in
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this case, nonsingular assembly mode transitions were confirmed [38]. Fur-
ther works dealt with the 3−PRR manipulator, studied in [18] and [39], the
RPR− 2−PRR, examined in [40], and other configurations employing only
rotational joints [41].

Much less literature can be found for 2-DOF mechanisms. Most literature
focuses on the RRRRR configuration [21, 42, 43, 44, 45, 46]. Prismatic
joints may be used for the joint proximal to the base or for the central
joints, obtaining a PRRRP manipulator [47] or a RPRPR configuration [24],
respectively. More recently, parallelogram based structures found application
as well [48, 49]. To the best of our knowledge, nonsingular assembly mode
transitions were never shown for 2-DOF manipulators, excluding the case
of 3-DOF manipulators with one joint fixed, for which the platform usually
undergoes compound translations and rotations.

This paper investigates the possibility of executing nonsingular assembly
mode transitions in simpler cases. First, it shows the possibility of execut-
ing such maneuvers for a 2-DOF manipulator whose platform is actuated
by RRR legs and constrained to rotations and translations along a single
direction by a passive leg. The structure is described in Section 2. The solu-
tion to the inverse and direct kinematics problems is given in Section 3 and
Section 4, respectively. Singularities are then analyzed in Section 5. Their
geometrical interpretations is given, and the singularity loci is obtained. A
nonsingular assembly mode transition, obtained by encircling one of the cusps
present in the loci, is then presented in Section 6. Successively, a modified
version of the manipulator, that allows only translational movements, is in-
troduced in Section 7. The impossibility of executing nonsingular assembly
mode transitions with this manipulator is proved. Section 8 then introduces
a purely translational mechanisms that exhibit nonsingular assembly mode
transitions. Section 9 summarizes the results and discusses possible exten-
sions of the work presented in this paper.

2. Kinematic structure

In the field of 2-DOF planar parallel manipulators, focus is usually given
to manipulators in which both the degrees of freedom are purely transla-
tional. Conversely, this paper first introduces a manipulator capable of plat-
form reorientation and displacement along a single direction. This kind of
structure may be considered as the planar version of lower mobility spatial
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Figure 1: The 2-RRR-PR manipulator studied.

parallel manipulators that employ passive legs between the base and the
platform [50, 51].

The link configuration is presented in Fig 1. The two links of length
a 	 0 are input links and the joints A1 and A2 are the only actuated joints.
These links are connected to the platform through the links BiCi of length
b 	 0. Without loss of generality, the prismatic joint axis of the passive leg
is taken as the vertical axis of the base reference frame. The location of the
actuated joints A1 and A2 is denoted in this reference frame by (ox,1, oy,1)
and (ox,2, oy,2), respectively. The input variables, i.e. the angles formed by
the links AiBi with the horizontal axis, are denoted by θi, i ∈ {1, 2} . The
angles2 formed between the horizontal and the BiCi links are denoted by ψi,
i ∈ {1, 2} .

The reference frame for the platform is an arbitrary frame with the origin
located at C0, the rotational joint that connects the passive leg to the plat-
form. The position, in the platform reference frame, of the rotational joints
C1 and C2 is denoted for convenience in polar coordinates, (ci, ξi), i ∈ {1, 2} ,
ci 	 0. The orientation of the platform with respect to the reference frame
is denoted by φ, and its displacement along the vertical by h.

2In the following, figures included, all angles are assumed to be expressed in radians.
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3. Inverse kinematics

From Fig. 1 the following loop closure equations can be written

cicos (φ+ ξi)− ox,i − a cos (θi) = b cos (ψi)

h + cisin (φ+ ξi)− oy,i − a sin (θi) = b sin (ψi) .
(1)

Defining

dx,i = cicos(φ+ ξi)− ox,i

dy,i = h+ cisin(φ + ξi)− oy,i

d2i = d2x,i + d2y,i,

then squaring and summing the equations we obtain

d2i − 2dx,ia cos(θi)− 2dy,ia sin(θi) + a2 = b2. (2)

If di 6= 0 then by rearranging the terms, and dividing by 2dia, we can write

d2i + a2 − b2

2dia
=
dx,i
di

cos(θi) +
dy,i
di

sin(θi)

The right hand side can be interpreted as the expansion of the cosine of
a difference, and therefore3

θi = arctan2(dy,i, dx,i)± arccos

(

d2i + a2 − b2

2dia

)

. (3)

We notice that we have

• one solution when
d2
i
+a2−b2

2dia
= −1, which is verified when the arm is

fully-stretched (b = di + a), and when
d2
i
+a2−b2

2dia
= 1, corresponding to

the arm folded back (b = di − a).

• no solution for
∣

∣

∣

d2
i
+a2−b2

2dia

∣

∣

∣
> 1, i.e. for b < d− a or b > d+ a.

• two solutions for
∣

∣

∣

d2
i
+a2−b2

2dia

∣

∣

∣
< 1, corresponding to the “elbow-up” and

“elbow-down” solutions.

3arctan2 is the two-argument arctangent function that corrects for the quadrant of the
angle, arctan2(y, x) = 2 arctan y√

x2+y2+x
.
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It is therefore clear that the manipulator has four working modes, given by
the elbow-up / elbow-down configuration of each of the two legs.

When one of the di is zero, i ∈ {1, 2} then the system for that leg reduces
to

a cos(θi) = b cos(θi)

a sin(θi) = b sin(θi)

which has no solutions for a 6= b and infinite solutions otherwise.

4. Direct kinematics

In the direct kinematics, given the values θ1 and θ2, we want to determine
the possible outputs φ and h, −π < φ ≤ π. When the actuated joints are
locked, the structure can be thought as a four bar linkage to which the passive
constraining leg is added. The coupler curve of a four bar linkage is a sextic,
we can therefore expect the mechanism to have degree 6 or less.

Using the Weierstrass substitution t = tan(φ/2), an algebraic equation
in t of degree 6 can be found, following a derivation similar to the one re-
ported in [52] for the RPR − PR − RPR manipulator. For a given φ, the
corresponding (unique) height h is

h =
f 2
2 + g22 − f 2

1 − g21
2(g1 − g2)

,

where

fi = ci cos (φ+ ξi)− ox,i − a cos (θi)

gi = ci sin (φ+ ξi)− oy,i − a sin (θi)

when g1 6= g2. If g1 = g2, then it can be shown that the multiplicity of the
solutions in φ is at least two, and for each value of φ there are two solutions
for h, namely

h = −g1 ±
√

b2 − f 2
1 .

We can show that six is a tight bound to the number of solutions by pro-
viding examples of mechanism inputs that admit up to 6 different assembly
modes. Figure 2 provides an example design (design 1) in which none of the
6 solutions is such that g1 = g2. Figure 3 provides an example (design 2)
in which 4 solutions with g1 = g2 are present. For this configuration, other
two solutions, having the same h, exist. Dimensions of the manipulators and
solutions are reported, respectively, in tables 1 and 2.
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Parameter Design 1 Design 2
a 1 1
b 3/4 3/4
c1 2/3 3/2
c2 2/3 3/2
ξ1 2/3π π
ξ2 π/3 0
θ1 π/4 π/3
θ2 2/3π 2/3π
øx,1 -1 -2/3
øx,2 1 2/3
øy,1 0 0
øy,2 -2/5 -14/5

Table 1: Design dimensions

Design 1 Design 2
φ h φ h

-2.99087 0.983679 -1.938 -0.278599
-2.9365 1.34443 -1.938 -0.78935
-1.07736 -0.245183 -1.20359 0.117353
-0.425721 -0.670954 -1.20359 -1.1853
-0.338703 0.782205 -1.97007 -0.533975
0.89563 -0.0481114 -0.934547 -0.533975

Table 2: Design solutions
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Figure 2: The six direct kinematic solutions of Design 1. The links AiBi of length a are
shown by dashed lines. The dashed circles have radius b and center Bi. They indicate
the possible locations for the platform points Ci in presence of the sole constraint given
by links of length b. The dotted line represents the y axis, i.e. the possible locations for
C0. Links A1B1, B1C1 and the circle of radius b centered in B1 are shown with thick line.
The elements of the second leg are shown with thin line.

5. Singularity analysis

The loop closure equations can be written in vector form as

h+ ci = oi + ai + bi

for i ∈ {1, 2} , where

h = [0 h 0]T

ci = [cx,i cy,i 0]T = ci[cos(φ+ ξi) sin(φ+ ξi) 0]T

oi = [ox,i oy,i 0]T

ai = a[cos(θi) sin(θi) 0]T

bi = b[cos(ψi) sin(ψi) 0]T .
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Figure 3: The six kinematic solutions of Design 2. Note that for this design, the platform
points C1, C0 and C2 are aligned. Panel (a) shows 4 direct kinematic solutions for which
g1 = g2. Panel (b) shows the remaining two solutions, which share the same h. The
graphical notation of the figures follows that of Fig. 2.

The derivative over time yields

ḣy + φ̇z × ci = θ̇iz × ai + ψ̇iz × bi (4)

where y = [0 1 0]T and z = [0 0 1]T . Dot multiplication of both mem-
bers of by bi leads to

ḣy · bi + φ̇z · (ci × bi) = θ̇iz · (ai × bi),

which can be written in matrix form as

Jwẇ = Jqq̇

with w = [h φ]T , q = [θ1 θ2]
T and

Jw =

[

by,1 by,1cx,1 − bx,1cy,1
by,2 by,2cx,2 − bx,2cy,2

]

=

[

b sin(ψ1) bc1 sin (ψ1 − (φ+ ξ1))
b sin(ψ2) bc2 sin (ψ2 − (φ+ ξ2))

]
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Jq =

[

ax,1by,1 − ay,1bx,1 0
0 ax,2by,2 − ay,2bx,2

]

=

[

ab sin(ψ1 − θ1) 0
0 ab sin(ψ2 − θ2)

]

.

Inverse kinematic singularities, that is local loss of degrees of freedom,
occurs for det(Jq) = 0. This happens for ψi − θi = kπ, k ∈ Z, i.e. when one
arm is fully-stretched or folded back.

In order to compute the singularity loci, let us rewrite the loop closure
equations (1) under the assumption ψi − θi = kπ as

ox,i + (a+ κib) cos(θi) = ci cos(φ+ ξi)

oy,i + (a+ κib) sin(θi)− h = ci sin(φ+ ξi)
(5)

where κi = 1 for ψi = θi mod 2π and κ = −1 for ψi = θi + kπ mod 2π.
Squaring and summing the equations we get

(ox,i + (a+ κib) cos(θi))
2 + (oy,i + (a+ κib) sin(θi)− h)2 = c2i

from which we derive

h = oy,i + (a + κib) sin(θi) + ζ
√

∆C,i (6)

with ∆C,i = c2i − (ox,i + (a + κib) cos(θi))
2 and ζ ∈ {−1,+1}, i.e. for each

singular position of the i-th leg (defined by θi and κi) we have

• no feasible configuration if ∆C,i < 0

• the possibility of having singular platform configurations with a single
height if ∆C,i = 0

• the possibility of having two height values if ∆C,i > 0

For each height h of the platform, computed from Eq. 6, the corresponding
platform orientation can be computed from the equations (5) as

φ = −ξi + arctan2 (oy,i + (a+ κib) sin(θi)− h, ox,i + (a+ κib) cos(θi)) .

The feasibility of these (h, φ) configurations depends on the other leg 3 − i,
for which the number of real solutions of Eq. 3 must be checked. Depending
on the number of solutions of this equation, for each platform we then get
zero, one (in case both legs are in a singular configuration) or two solutions
corresponding to the two working modes of the leg 3− i.
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Fig. 4 shows the inverse kinematic singularities in the joint space. The legs
are non-cuspidal, therefore the serial singularities separate the inverse kine-
matics solutions. Fig. 5 shows how the singularities delimit the workspace.
A direct expression for the workspace limits can be found in the following
way. Let us rearrange the loop closure equations as

ci cos (φ+ ξi)− ox,i = b cos (ψi) + a cos (θi)

h+ ci sin (φ+ ξi)− oy,i = b sin (ψi) + a sin (θi) .

For a given φ, by squaring and summing the two equations we obtain the
two solutions for h,

h = µH,i ±
√

∆H,i

with

µH,i = oy,i − ci sin (φ+ ξi)

∆H,i = a2 + b2 + 2ab cos(δi)− (ci cos (φ+ ξi)− ox,i)
2

where δi = ψi − θi.
Intuitively, the workspace extreme h values are obtained with one of the

legs fully stretched, and therefore for one δi = 0. This can be proven formally
by considering that the partial derivatives of the two solutions with respect
to δi are respectively

∂h

∂δi
= ∓ab sin(δi)√

∆H,i

and therefore the solution h = µH,i +
√

∆H,i (resp. h = µH,i −
√

∆H,i)
achieves its maximum (resp. minimum) for δi = k2π and its minimum (resp.
maximum) for δi = π + k2π. For a given φ, therefore, the range of possible
heights h is

[

maxi

{

µH,i −
√

∆∗

H,i

}

, mini

{

µH,i +
√

∆∗

H,i

}]

with

∆∗

H,i = (a+ b)2 − (ci cos (φ+ ξi)− ox,i)
2 .

Direct kinematic singularities (loss of controllability of at least one degree
of freedom) occur for det(Jw) = 0, i.e. for

c2 sin(ψ1) sin (ψ2 − (φ+ ξ2))− c1 sin(ψ2) sin (ψ1 − (φ+ ξ1)) . (7)

We can categorize the singularities into several cases:
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Figure 4: The inverse kinematic singularities in the joint space. Thick lines denote singu-
larities of the first leg (i = 1), thin lines show the singularities of the second leg (i = 2). The
two possible values for the height of the platform associated to a singular solution are shown
by dashed lines (ζ = 1) and dash dot lines (ζ = −1). Different dash spacings are used to
indicate the working mode of the leg that is not in a singular configuration. Expressing

its inverse kinematic solution as θ3−i = arctan2(dy,3−i, dx,3−i) + λ arccos
(

d2

3−i
+a2

−b2

2d3−ia

)

,

solutions obtained for λ = −1 are shown by longer spacings and solutions with λ = 1 are
shown by shorter ones. We note that all of the singularities are obtained for κ = 1, i.e.
only singularities with the arm fully stretched, and none with the folded back arm, exist
for this particular dimensioning of the manipulator.
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Figure 5: The inverse kinematic singularities in the workspace. Thick lines denote singu-
larities of the first leg, thin lines show the singularities of the second leg. The two possible
values for the height of the platform associated to a singular solution are shown by dashed
lines (ζ = 1) and dash dot lines (ζ = −1). We note that all of the singularities are ob-
tained for κ = 1, i.e. only singularities with the arm fully stretched, and none with the
folded back arm, exist for this particular dimensioning of the manipulator. The shaded
area denotes the reachable workspace.
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• by,i = 0 ∧ cy,i = 0, i ∈ {1, 2} . In this case, the rank of the matrix is
zero, and any infinitesimal movement (rotation of the platform around
C0 and vertical translation) is allowed, see Fig. 6(a).

• by,1 = by,2 = 0, ∃cy,i 6= 0, i ∈ {1, 2} . In this case, the platform
does not withstand infinitesimal translations along the vertical axis,
see Fig. 6(b).

• ∃by,i 6= 0, i ∈ {1, 2} , and bi collinear with ci. In this case of singularity,
by Eq. 7, b3−i is collinear with c3−i as well, and the platform can
undergo infinitesimal rotations around C0, see Fig. 6(c).

• ∃by,i 6= 0, i ∈ {1, 2} , and bi not collinear with ci. In this case, under the
conditions of Eq. 7, the platform cannot withstand a rototranslation
movement with ḣ = α(by,icx,i − bx,icy,i) and φ̇ = −αby,i, where α is an
arbitrary constant, α ∈ R, α 6= 0, see Fig. 6(d).

The direct kinematic singularities are shown in the joint space and in the
workspace in Fig. 7 and Fig. 8, respectively.

6. Nonsingular transition

The projection of the direct kinematic singularities over the joint space,
visible in Fig. 7, clearly shows a cusp in proximity of the configuration
(θ1, θ2) = (1, 1.65). We note that there are other cusps, and that actu-
ally the number of cusps depends on the dimensioning of the manipulator.
It can be shown, for instance, that there exists particular dimensionings that
have no cusps at all. Analysis of the number of cusps, as provided in [53]
for the 3 − RPR manipulator, may be of great interest for a deeper under-
stating of this class of manipulators. In the following, however, we just focus
on the analysis of this single cusp and show that it allows the execution of
nonsingular assembly mode transitions.

Three dimensional projections of the direct kinematic solutions in the
neighborhood of this cusp are shown in Fig. 9 and Fig. 10. Fig. 9 shows
the projection over θ1, θ2, φ. In this space, the configuration manifold has a
typical S-shaped folding [17]. Fig. 10 shows the projection over θ1, θ2, h.

A nonsingular transitions between two assembly modes can be executed
by encircling this cusp. In particular, it is possible to encircle the cusp
by a very elementary manipulator actuation: a pure rotation of the platform
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Figure 6: Geometrical interpretation of the direct kinematic singular configurations. (a)
The platform can perform any infinitesimal rototranslation. (b) The platform can undergo
infinitesimal translations. (c) The platform can undergo infinitesimal rotations around
C0. (d) The platform cannot withstand infinitesimal rototranslations with a specific ratio
between the rotation and the translation velocities ḣ and φ̇, respectively. In particular,
this ratio makes the instantaneous velocity of each point Ci, ḣ+ ω × ci = ḣy + φ̇z × ci,
orthogonal with the respective link bi. A numerical example for this case is a = 3,
b = 2, θ1 = θ2 = 2/3π, c1 = 2, ξ1 = 5/6π, c2 = 3, ξ2 = π/6, ox,1 = 3/2 −

√
3 − 7

√

13
,

ox,2 = 3/2 + 3
√

3

2
+ 1

√

7
, oy,1 = 1 +

√

3/13 − 3
√

3

2
, oy,2 = 3/14(7 − 7

√
3 + 2

√
21) φ = 0,

h = 0.
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Figure 7: The direct kinematic singularities in joint space. Different line styles are used
for different working modes. In particular, by defining the inverse kinematic solutions as

θi = arctan2(dy,i, dx,i) + ιi arccos
(

d2

i
+a2

−b2

2dia

)

, ιi ∈ {−1, 1}, i ∈ {1, 2} , working modes

with ι1 = −1 are shown with thin lines, while working modes with ι1 = 1 are shown by
thick lines. Working modes with ι2 = −1 are shown by dashed lines, ι2 = 1 are shown by
solid lines.
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Figure 8: The direct kinematic singularities in the workspace. Different line styles are
used for different working modes, with the criteria explained in Fig. 7.
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Figure 9: The projection of the manipulator configurations over the θ1, θ2, φ space. Thick
lines indicate direct kinematics singularities. Thin solid lines indicate inverse kinematics
singularities. The dashed line shows the path taken during the nonsingular maneuver.
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Figure 10: The projection of the manipulator configurations over the θ1, θ2, h space. Thick
lines indicate direct kinematics singularities. Thin solid lines indicate inverse kinematics
singularities. The dashed line shows the path taken during the nonsingular maneuver.

around C0 followed by a pure translation in the vertical direction. The move-
ment is planned in the workspace, and connects two configurations having the
same value for the actuated joints. In more detail, for (θ1, θ2) = (0.87, 1.77),
four platform configurations (φ, h) are feasible, namely (−0.9917,−0.1942),
(0.3198,−0.4153), (−0.3255, 0.8265) and (−0.0922,−0.5873). The first two
configurations can be connected by a movement that first changes the orien-
tation φ, and than changes the platform height h. Fig. 11 and Fig. 12 show
the evolution of the variables, assuming each movement section is executed
taking 50 arbitrary time units. Fig. 12 also reports the value of the the deter-
minants of Jq and Jw for each configuration, showing that no singularity is
encountered during the maneuver. We note that since each leg of the manip-
ulator is non-cuspidal, by checking that no inverse kinematic configuration
are passed, we are guaranteed that the working mode does not change during
the assembly mode transition. Fig. 13 shows some of the postures taken by
the manipulator during the nonsingular assembly mode transition.

7. Translational version

Fig. 14(a) shows a purely translational 2-DOF manipulator obtained by
a very simple modification of the structure previously studied. In detail,
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Figure 11: Nonsingular assembly transition. Evolution over time of the platform orienta-
tion in panel (a) and of its height in panel (b).
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Figure 12: Nonsingular assembly transition. (a) Evolution over time of the actuated joint
angles. Thick line is used to indicate the value of θ1, thin line shows the value of θ2. (b)
Evolution of the determinants of Jw (thick line) and Jq (thin line) used for identifying
direct and inverse kinematic singularities, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 13: Poses assumed during the nonsingular assembly mode transition. (a) Initial
configuration (t = 0). (b) Configuration with minimum θ2 (t ≈ 20.5). (c) Configuration
with maximum θ1 (t ≈ 40.5). (d) Configuration at the end of the platform rotation. (e)
Generic configuration during the platform vertical descend movement(t = 75). (f) Final
configuration (t = 100).

the rotational joint of the passive leg is replaced with a prismatic joint not
parallel with the already existing “vertical” prismatic joint. A very natural
choice would be making the prismatic joints orthogonal. A more practically
oriented variant of the mechanism is shown in Fig. 14(b). We note that this
manipulator is similar to the RPRPR [24].

In the following, we will show that despite the similarity with the previ-
ous manipulator, this structure cannot undergo nonsingular assembly mode
transitions. This is not a unique case in the realm of parallel manipula-
tors, see for instance [54]. For simplifying the notation and without loss of
generality, the reference frame for the base is taken in A1. The coordinates
of C1 are denoted by (x, y) and are taken as the reference for the platform
position (output variables). The axes of this platform reference frame are
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Figure 14: (a) The 2-RRR-PP purely translational manipulator obtained by substitution
of the rotational joint with a prismatic joint. (b) A more practical variant, realized only
with rotational joints and with improved stiffness due to the parallel configuration of the
constraining linkage.

assumed parallel to the ones of the base reference frame. The location of C2

is expressed in the platform reference frame by the coordinates (lx, ly). The
actuated joints remain located in A1 and A2, having in this case coordinates
(0, 0) and (ox,2, oy,2), respectively. The length of the links proximal to the
actuated joints is still denoted by a 	 0, and the more distal links have once
again length b 	 0.

Given this notation, the loop closure equations are reduced to

a cos(θ1) + b cos(ψ1) + lx = ox,2 + a cos(θ2) + b cos(ψ2)

a sin(θ1) + b sin(ψ1) + ly = oy,2 + a sin(θ2) + b sin(ψ2).

The solution of the direct kinematics problem for this manipulator can be
found using an approach very close to the derivation of Eq. 3. By defining

ρx = a cos(θ1)− a cos(θ2) + lx − ox,2

ρy = a sin(θ1)− a sin(θ2) + ly − oy,2

ρ =
√

ρ2x + ρ2y

the equations can be rewritten as

b cos(ψ1) + ρx = b cos(ψ2) (8)

b sin(ψ1) + ρy = b sin(ψ2) (9)
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from which, by squaring each term of the equations and summing, we obtain

2bρx cos(ψ1) + 2bρy sin(ψ1) + ρ2 = 0.

If ρ 6= 0, then it is possible to divide by 2bρ and, by interpreting the equation
as the expansion of the cosine of the difference of angles, we get

ψ1 = τ + µ.

where τ = arctan2(ρy, ρx) and µ = ± arccos
(

−ρ

2b

)

.
If, instead, ρ = 0, then the loop equations reduce to

b cos(ψ1) = b cos(ψ2)

b sin(ψ1) = b sin(ψ2)

that is, infinite solutions exist, all characterized by having the links of length
b parallel (ψ1 = ψ2). Any of such solutions is clearly singular, as the platform
can undergo infinitesimal translations in the direction orthogonal to the distal
links of the actuated legs.

Given an actuated joint configuration (θ1, θ2), for each solution of ψ1,
there exists a single platform configuration, namely

x = a cos(θ1) + b cos(ψ1)

y = a sin(θ1) + b sin(ψ1).

For each input joint configuration, therefore, there are (maximum) two plat-
form positions. If the relationship between the input and output velocities
is expressed again as

Jwẇ = Jqq̇ (10)

with w = [x y]T and q = [θ1 θ2]
T , then these two solutions must have

a different value of the sign of det(Jw), and are therefore separated by a
singularity. This can be proved directly as follows. Defining the vector
quantities

v = [ẋ ẏ 0]T

z = [0 0 1]T
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and

ai = [a cos(θi) a sin(θi) 0]T = [ax,i ay,i 0]T

bi = [b cos(ψi) b sin(ψi) 0]T = [bx,i by,i 0]T

for i ∈ {1, 2} , the following identity can be written

v = θ̇i(z × ai) + ψ̇i(z × ai).

By taking the dot product of each member with bi, it is possible to cancel
the term ψ̇i(z × ai) and determine the matrices of Eq. 10:

Jw =

[

bx,1 by,1
bx,2 by,2

]

Jq =

[

ax,1by,1 − ay,1bx,1 0
0 ax,2by,2 − ay,2bx,2

]

.

It follows that

det(Jw) = b sin(ψ2 − ψ1).

This expression can be further simplified by determining ψ2. In particular,
remembering that ψ1 = τ + µ and noticing that ρx = ρ cos(τ) and ρy =
ρ sin(τ), the two equations Eq. 8 and Eq. 9 can be rewritten as

cos(τ + µ) +−2
−ρ cos(τ)

2b
= cos(ψ2)

sin(τ + µ) +−2
−ρ sin(τ)

2b
= sin(ψ2).

By the definition of µ we have cos(µ) = −ρ

2b
and thus

cos(ψ2) = −(sin(τ) sin(µ) + cos(τ) cos(µ)) = cos(τ − µ+ π)

sin(ψ2) = cos(τ) sin(µ)− sin(τ) cos(µ) = sin(τ − µ+ π)

from which we obtain ψ2 = τ − µ+ π and thus

det(Jw) = b sin(ψ2 − ψ1) = b sin(2µ).

This clearly shows that if the actuated joints do not lead to a singular config-
uration, the two configurations that the platform can assume have opposite
values of det(Jw), and cannot therefore be joined by a nonsingular assembly
mode transition.
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8. Purely translational manipulator with nonsingular assembly mode

transitions

In the previous section, it was shown that for a 2 − RRR manipulator
with a constraining passive leg that limits the motion to pure translations
nonsingular assembly mode transitions are impossible. Purely translational
2-DOF mechanisms that undergo nonsingular assembly mode transitions can
however be constructed. This can be done by leveraging on the results ob-
tained in the first part of the paper. Let us consider the manipulator shown
in Fig. 15. This structure can be derived considering the platform C0C1C2 of
Fig. 1 as a simple link, and attaching a new rotational joint D0 to this link.
A new platform can then be attached to this new rotational joint D0 and to
a new passive constraining leg λ3, χ3 that forces the platform movement to
be purely translational. Let us suppose the joint D0 is placed at distance d
from C0 along the direction which previously corresponded to the y-axis of
the platform. Assuming the new reference frame for the platform location is
parallel to the base reference frame, and with origin in D0, the output of the
manipulator is given by

[

x
y

]

=

[

d cos(φ)
h + d sin(φ)

]

.

The relationship between the velocities of the new platform and the old
platform is clearly

[

1 0
0 1

] [

ẋ
ẏ

]

=

[

−d sin(φ) 0
d cos(φ) 1

] [

φ̇

ḣ

]

and therefore if the manipulator previously studied does not encounter a
singular configuration, neither does the new one. The previously shown non-
singular assembly mode transition corresponds therefore to a nonsingular
assembly mode transition for the manipulator of Fig. 15.

9. Conclusions

In this paper, the existence of nonsingular assembly mode transitions
in 2-DOF manipulators was investigated. First, it was proved that these
transitions can occur in manipulators whose range of motions include trans-
lation along a fixed direction and rotation of the platform. This was done
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Figure 15: A 2-DOF mechanism capable of nonsingular assembly mode transitions.

by introducing a novel 2-DOF manipulator, actuated by two RRR legs and
constrained by a third passive leg that allows only the chosen motions.

The inverse and direct kinematic problems for this manipulator were
solved. The maximum number of direct kinematic solutions was proved to
be six, and examples of configurations actually exhibiting six real distinct
solutions were given. Analysis of direct and inverse kinematics was provided,
and a geometrical interpretation of the singularities was given.

An example of dimensioning of the manipulator that presents cusps in the
singularity loci was then studied. It was shown that it is possible to perform
a nonsingular assembly mode transition by encircling one of these cusps.
In particular, the transition can be performed by a pure platform rotation
followed by a pure platform translation. We believe this is one of the simplest
examples of nonsingular assembly mode transitions ever shown in literature.
The configuration studied, therefore, could prove to be valuable as a first
benchmark for numerical methods that automatically identify nonsingular
changes of assembly mode.

It was then proved that if the passive leg of the manipulator is modified
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to allow only translations, nonsingular assembly mode transitions become
impossible. Finally, it was shown that, in general, planar mechanisms con-
strained to pure translations can perform nonsingular assembly mode tran-
sitions.

This observations leads to two diametrical lines of future work. On the
one hand, it would be interesting to extend the proof of non-existence of
nonsingular transitions reported in Section 7 to a wider class of planar 2-DOF
manipulators. On the other hand, the manipulator of Fig. 15 motivates the
pursue for the simplest 2-DOF purely translational manipulator for which
nonsingular assembly mode transitions can occur. Additionally, definition
of conditions under which nonsingular transitions are impossible for 2-DOF
manipulators capable of platform rotations could extend the results presented
here to complete the view of the behavior of nonsingular assembly mode
transitions in 2-DOF mechanisms.
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