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Abstract

Animals are able to cope with the noise, uncertainties and complexity of the real world. Often

even elementary living beings, equipped with very limited sensory organs, are able to reach regions

favorable to their existence, using simple stochastic policies. In this paper we discuss a minimalistic

stochastic behavioral rule, inspired from bacteria chemotaxis, which is able to increase the value of

a specified evaluation function in a similar manner. In particular, we prove that, under opportune

assumptions, the direction that is taken with maximum probability by an agent that follows this

rule corresponds to the optimal direction. The rule does not require a specific agent dynamics,

needs no memory for storing observed states, and works in generic n-dimensional spaces. It thus

reveals itself interesting for the control of simple sensing robots as well.
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I. INTRODUCTION

Living organisms must face the complexity of natural environments while searching for

nutrients, often with very scarce available information. Different strategies, of different

complexity, are adopted by different living beings. A first classification that can be made is

between taxis and kinesis [1, 2]. Taxis is used to denote the responses to stimuli (chemicals,

light, temperature, etc.) that lead to a change in the agent’s trajectory that is biased by

the stimulus gradient direction.

Taxis can be further subdivided in klinotaxis, tropotaxis and telotaxis. In klinotaxis [3, 4],

the organism directs its movement by comparing the intensity of the stimulus acquired while

moving laterally (transverse klinotaxis) or along its own path (longitudinal klinotaxis). In

principle a single sensory organ is required, although often multiple sense organs are present.

In tropotaxis [5], paired sensory organs are used to align the movement direction: the animal

turns until the two sensory organs are stimulated equally, and then moves forward. In

telotaxis, the animal moves directly toward the goal [6].

Kinesis denotes responses to stimuli that correspond to an undirected alteration of the

characteristic of the movement, e.g. a variation of the frequency of random turns, the speed

or the length of straight runs, etc. Two types of kinesis can be identified: orthokinesis [7],

when the speed (linear velocity) of the movement depends on the intensity of the stimu-

lus, and klinokinesis, when the angular velocity, or, better, the sinuosity [8], is changed in

response to the stimuli. Among the organisms that reach nutrients by exploiting klinoki-

nesis, we find the well-studied Escherichia Coli [9]. This bacterium proceeds by alternating

straight runs to tumbles that change its direction randomly. In the case of a positive gra-

dient of nutrients, E. Coli reduces its tumbling frequency. This simple stochastic strategy,

usually modeled by a biased random walk, is able to drive bacteria to high concentrations

of nutrients despite the difficulties in precisely sensing the gradient.

In [10] we proposed a simplified, generic model for the movement of animals in similar

settings, that we termed Minimalistic Behavioral Rule (MBR). We showed that making

the behavior stochastic to a certain degree improves the performances. In particular, the

relationship between the magnitude of the aleatory component of the behavior and the

chemotactic performance follows the classic stochastic resonance curve.

In brief, Stochastic Resonance(SR)[11] is a phenomenon by which the addition of random
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noise enhances weak signal detection, and its existence has been confirmed in a wide variety

of nonlinear systems[12, 13]. In [14], Fauve and Heslot reported a stochastic resonance effects

in a discrete two-state electronic Schmitt trigger. Successively, McNamara et al.[15, 16]

measured a SR in an optical bistable system, a bidirectional ring laser. Several studies

reported SR effects in semiconductors [17, 18], as well as in chemical reactions [19–21]. SR

is not limited to explain weak signal detection, but, more in general, the improvement, due

to noise, of signal processing or agents behaviors, as for the paddle fish case studied in [22].

The work in [10] showed experimentally that a SR effect occurs also considering the

stochasticity of the behavior and the chemotactic performance of an agent driven by MBR.

We must note that the proposed model actually captures only the following elements of E.

Coli chemotaxis:

• The information available to the agent is limited to the sign of the temporal gradient

of the evaluation function. The evaluation function represents the concentration of

nutrients or repellents in the E. Coli case.

• The agent cannot choose directly the actions to take, but can just change the level

of randomness in its behavior. This corresponds to changing the run length in the E.

Coli case.

On the other hand, many features of the E. Coli movement cannot find direct correspon-

dence in our simplified model. In detail, all the source of randomness when the evaluation

function value increases are summarized by a single parameter η. In the E. Coli case, this

aleatory component is given by a variety of sources, e.g. rotational diffusion, periodic tum-

bling, and perturbation arising from self-propulsion. Similarly, all the details concerning E.

Coli chemotaxis pathway, adaptation and memory are ignored by the model.

The role of the model is showing that, even in a setup where the agent is equipped only

with these limited sensing capabilities and limited choice on its own action, the agent can

maximize the evaluation function. In this paper, we will provide a formal analysis that

allows us to predict the actual behavior of an agent controlled by the MBR. In particular,

in Section III we show that, under opportune simplifying assumptions, an agent driven by

MBR takes, with the highest probability, a trajectory that corresponds to an approximation

of the movement over the steepest gradient of an evaluation function, corresponding to the

concentration of nutrients for the E. Coli case.
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In section IV we then provide simulation experiments, that show the meaning of the

proof result in more abstract settings. In particular, we analyze the case of an agent with

a non-linear dynamics and the behavior in highly dimensional spaces. These results appear

highly interesting from the engineering point of view, as they show that the proposed rule,

derived from bacteria chemotaxis, can be used in general for the control of complex, high

dimensional systems. Finally, Section V summarizes the results and briefly discusses their

importance in the engineering field.

II. MINIMALISTIC BEHAVIORAL RULE

Mathematically, animal movements are usually modeled by random walks. A recent

review can be found in [23]. In detail, Brownian and Lévy walks are often taken as models

for animal behavior [24]. Since most animals have a tendency to continue moving in the same

direction, correlated random walks are frequently used to model animal paths as well [25].

In [10] a model of animal movement was proposed. The model can be considered as the

direct, mathematical translation of the intuitive definition given for klinokinesis in [26]: “if

conditions are improving, keep on in the same direction, otherwise try a new direction”.

The motion process, actually a biased correlated random walk, is described using a state

space model [27]. In detail, let us indicate the agent’s state by a vector x ∈ R
n. Let us

denote by u ∈ R
m a control input provided by the agent, that changes its state according

to the dynamics equation

xt+1 = f(xt,ut). (1)

The state for each instant of time is evaluated through an evaluation function (potential

field) g(xt). This intuitively expresses the quality of the state. For instance, it represents

the concentration of nutrients in the E. Coli case.

The MBR takes as input only the sign of the variation of this evaluation function, i.e. it

considers whether ∆Et ≥ 0, with Et = g(xt) and ∆Et = g(xt)− g(xt−1). The only actions

taken are the application of a small perturbation to the control input or a random selection

of a new control input. Formally, the MBR can be defined as

u
(i)
t+1 =











u
(i)
t + ηR if ∆Et ≥ 0

random selection otherwise
. (2)
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Where R ∼ N (0 , 1 ) is a random variable, and u
(i)
t is the i-th entry of a control input

vector u ∈ R
m.

In [10], it was experimentally confirmed that with simple potential fields g(x) MBR is able

to generate a sequence of ut which makes the state xt follow trajectories that, on average,

approximate the steepest positive gradient of the evaluation function. Additionally, it was

shown that the probability of taking the steepest direction depends on the noise magnitude

η.

Additionally, it was shown that the probability of taking the steepest direction de-

pends on the noise magnitude η. More precisely, in [10] the mutual information between

the direction taken by the agent and the real gradient direction as η varies was ana-

lyzed. Mutual information between two random variables X and Y is formally defined

as I(X, Y ) =
∫

Y

∫

X
p(x, y) log

(

p(x,y)
p(x)p(y)

)

dxdy, and provides a measure of the amount of in-

formation that one random variable contains about another random variable. Numerical

simulation showed that the curve that relates η to the mutual information is the classic

curve seen in SR phenomena [28]. This indicates that adding noise of appropriate inten-

sity maximizes the statistical dependence between the direction taken by the agent and the

optimal one, unknown to the agent.

We note that this noise is not to be intended as purely noise in sensing, which leads to a

performance decrease [29], but as a source of randomness in the whole agent’s behavior.

Additionally, we would like to stress that the model does not correspond directly to a

biased random walk with a variable length of the straight runs, taken as the usual math-

ematical model of E. Coli’s chemotaxis. The two models may be bridged by providing an

opportune dynamics function f(x, u). This paper aims at showing that the dynamics func-

tion f(x, u) does not need to be known by the agent for increasing the evaluation function

value Et. The definition of a dynamics specific for the E. Coli case is however of strong

interest and is left as a future work.

In the previous works, no theoretical proof on the behavior of an agent that moves

according to the MBR was given. The following section introduces an easily tractable

Markov Chain model for explaining the reasons underlying this experimentally observed

behavior.
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III. PROOF OF THE MAXIMUM PROBABILITY BEHAVIOR OF MBR

In order to investigate the features of MBR theoretically, we need to adopt several sim-

plifications. At first, we assume that the system can be locally linearized at every point of

the state space. In the following the linear approximation of the system Eq. 1 and of the

evaluation function E will be indicated as:

xt+1 = Axt +But (3)

Et = Cxt. (4)

Assuming that B is square (n = m) and invertible, and defining x′ = B−1x, the equations

can be rewritten as follows:

x′
t+1 = B−1ABx′

t + ut (5)

Et = CBx′

t. (6)

In this expression, ut isotropically influences the change of x′
t. If the norm of u is fixed

at small constant ∆u, the location of x′
t+1 is constrained on an hypersphere centered at

(I + B−1AB)x′
t with radius ∆u. In order to study this simplified case, we introduce a

restricted form of the MBR which enforces this constraint on the norm of u:

u
(i)
t+1 = ∆u

v(i)

|v(i)|

v(i) =











u
(i)
t + ηR if ∆Et ≥ 0

random selection otherwise
. (7)

where v(i) is a variable that follows the dynamics of u(i) in the original MBR (Eq. 2).

Comparing Eq. 7 with Eq. 2, it is clear that the restricted MBR here presented simply

introduces a normalization of the input vector for ensuring the above norm restriction. In

the following, we focus on the restricted MBR in order to investigate analytically the features

of the MBR.

Computing the stationary probability density function p(u) of generating the input u

would require us to solve the following multidimensional Fredholm integral equation of the
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FIG. 1. (Color online) The Markov Model used in the proof. For the two dimensional case, the

states can be given a physical meaning, corresponding to the angular direction taken by the agent,

as shown in this figure. The transition between the states are not indicated, as the states are, in

general, fully connected.

second type:

p(u) =

∫

· · ·

∫

Ω

K(u,µ)p(µ)dµ+

1−
∫

· · ·
∫

Ω

p(µ)dµ

S

=
1

S
+

∫

· · ·

∫

Ω

(

K(u,µ)−
1

S

)

p(µ)dµ (8)

whereK(u,µ) is the probability of taking the direction µ when the current direction is u due

to the random perturbation R, S = 2πm/2

Γ(m/2)
∆um−1 is the surface area of the m dimensional

sphere of radius u and Ω is the surface that correspond to directions that lead to an increase

of ∆Et. Only in very particular cases, the analysis can be conducted without resorting to

numerical simulations.

To study the behavior of the MBR we thus introduce a simpler approach. In detail, let

us map the values that u can take into a Markov chain with 4n states. Let us define the set

of inputs u mapped to the i-th state as ℘i. Let us define the mapping such that
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• ∀ui ∈ ℘i, ∀uj ∈ ℘j, 0 ≤ i < j ≤ n, C(Axt +Bui) < C(Axt +Buj)

• ∀ui ∈ ℘i, ∀uj ∈ ℘j,n ≤ i < j ≤ 3n, C(Axt +Bui) > C(Axt +Buj)

• ∀ui ∈ ℘i, ∀uj ∈ ℘j, 3n ≤ i < j < 4n, C(Axt +Bui) < C(Axt +Buj)

• ∀ui ∈ ℘4n−1∀uj ∈ ℘0 , C(Axt +Bui) < C(Axt +Buj)

and such that the transition probability from state i to j is the same as from state j to i

when the sole random perturbation ηR is applied.

This mapping is trivial for the 2D case, as Fig. 1 shows. The possible values for the

normalized input u are mapped to the states depending on the direction they take with

respect to the optimal direction (the horizontal direction in Fig. 1). In particular, it is

possible to partition the circle of radius ∆u in arcs of π/(2n) radians, and map consecutively

each arc to a state of the Markov chain. More in particular, let us assume to map the circle

such that the arcs where (the linear approximation of) ∆Et is 0, maximum and minimum

correspond to the states i = 0, i = n and i = 3n, respectively.

In order to investigate the characteristic of the MBR, we assume that the input has

enough influence of the system dynamics, i.e. B−1ABx′
t ≪ ∆u and that ∆u is small enough

to be able to assume the linear approximation of g(x) valid for a sufficiently high number

of steps. Clearly if ‖B−1ABx′
t‖2 > ∆u then u cannot influence the sign of the evaluation

∆Et and the gradient following behavior cannot emerge. When ‖B−1ABx′
t‖2 < ∆u, but

B−1ABx′
t cannot be ignored, essentially the dynamics of the system introduces a bias on the

trajectory taken by the agent, that will proceed on a trajectory that does not approximate

the gradient at every point x′
t. Explicit formulations of the effect of this bias need to be

identified case by case. In the following, therefore, we ignore the term B−1ABx′
t.

We note that under the assumptions of having the linear approximation of g(x) valid for a

sufficiently high number of steps, the same Markov model (as the one presented in Fig. 1) can

be used for successive time instants t while updating the state x′
t. The states of the Markov

chain come to assume the meaning of the direction taken by the agent while transitioning

from x′
t to x′

t+1. We assume non null transition probabilities at least between neighboring

states. This ensures that the chain has a stationary distribution, which we analyze in detail in

this paper. Practically, this stationary distribution indicates the direction taken by an agent

that moves according to the restricted MBR with a step size ∆u that is sufficiently small
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to be able to assume that the same linear approximation of the evaluation function remains

valid during the mixing time of the Markov chain. Let us analyze the limit distribution ρ

ρ = Pρ (9)
4n−1
∑

i=0

ρi = 1.

where ρ ∈ R
4n and P indicate the probability of the i-th state of the Markov chain (indexes

as in Fig. 1) and the 4n-by-4n transition matrix, respectively. The transition matrix P

consists of four submatrices corresponding to four combinations of the signs of ∆Et,∆Et+1,

that derive from the states (directions) taken by the Markov chain at time t and t + 1:

P =





P(+,+) P(−,+)

P(+,−) P(−,−)





P(+,+) =





















a0 a1 · · · a2n

a1 a0 · · · a2n−1

a2 a1 · · · a2n−2

...
...

. . .
...

a2n a2n−1 · · · a0





















∈ R
2n+1×2n+1

P(+,−) =





















a2n−1 a2n · · · a1

a2n−2 a2n−1 · · · a2

a2n−3 a2n−2 · · · a3
...

...
. . .

...

a1 a2 · · · a2n−1





















∈ R
2n−1×2n+1

P(−,+) =

















1
4n

1
4n

· · · 1
4n

1
4n

1
4n

· · · 1
4n

...
...

. . .
...

1
4n

1
4n

· · · 1
4n

















∈ R
2n+1×2n−1

P(−,−) =

















1
4n

1
4n

· · · 1
4n

1
4n

1
4n

· · · 1
4n

...
...

. . .
...

1
4n

1
4n

· · · 1
4n

















∈ R
2n−1×2n−1 (10)
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where we assume that the random selection of Eq. 7 corresponds to uniform selection of the

new state (hence the 1
4n

in P(−,+) and P(−,−)) and we assume the probability of transitioning

from a state i to a state j to be a decreasing function of the distance between i and j

in 4n modular arithmetic. Formally, the entry P(i,j), 1 ≤ i ≤ 4n, 1 ≤ j ≤ 2n + 1 is

P(i,j) = amin(|i−j|,4n−|i−j|), with

a0 + 2
2n−1
∑

i=0

ai + a2n = 1 (11)

ai > aj (i < j, 0 ≤ i, j ≤ 2n). (12)

As a concrete example, if in the 2D case R ∈ R
2 in Eq. 7 is defined as R ∼ N (0 , 1 ), then

indicating by z(θ|µ, κ) the Von Mises distribution probability density function, we have

ai =

∫ (i+0.5)/2n

(i−0.5)/2n

z(θ|0, κ)dθ

with κ = 1/η2. We note, that, however, the results reported in the following are valid for R

belonging to any symmetric distribution, for which the condition ai > aj∀i, j : i < j, 0 ≤

i, j ≤ 2n holds.

In this paper, we prove the following two points on the stationary distribution ρ:

1. The stationary distribution ρ has ρi = ρ2n−i for 0 ≤ i ≤ 2n and ρi = ρ6n−i for

2n + 1 ≤ i ≤ 4n − 1 i.e. intuitively it is symmetric with respect to the the line

connecting the state n with the state 3n shown in Fig. 1

2. The peak of the distribution is located at the state n, i.e. ρn

If these points are proven, it is possible to conclude that the restricted MBR is able to make

the state x′ evolve toward the steepest direction of the evaluation function g(x′
t) because the

state n, in the linear approximation we adopt, is always along the direction of the gradient at

x′
t. Note that in this paper we do not discuss the effect of noise intensity ηi on the stationary

distribution ρ or on its mixing time, that, in turn, determine the mutual information between

the gradient of the evaluation function and the direction actually taken by a MBR-controlled

agent. In Section IV, however, we provide numerical simulations showing that the SR effect

can be observed in settings that strongly differ from the simple case reported in [10].
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A. Distribution symmetry

In order to prove point 1, we first premultiply both sides of Eq. 9 by Ts, a (2n−1)-by-4n

matrix having the entry of the i-th row and j-column set as

Ts,(i,j) =







































1 if j = n− i+ 1 ∧ i ≤ n

1 if j = 4n+ (n− i+ 1) ∧ i > n

−1 if j = n+ i+ 1

0 otherwise

. (13)

The premultiplication consists of subtracting the (n+i+1)-th equation from the (n−i+1)-

th (or the 4n+(n− i+1)-th equation) in the system of equations reported in Eq. 9. In other

words, this means calculating the differences between couples of equations that correspond

to states of the Markov model symmetrically located with respect to the gradient direction

in Fig. 1. The transformed equation can be written as a homogeneous system of linear

equations:

(I − Ps)ρs = 0. (14)

Where I is an identity matrix of dimension 2n−1 and ρs ∈ R
2n−1 is a new set of variables

defined as ρs = Tsρ. The matrix Ps is a (2n− 1)-by-(2n− 1) matrix with the entry in the

i-th row and j-column equal to

Ps(i,j) =











0 if j > n

a|n−i−j+1| − a2n−|n−i+j−1| otherwise
. (15)

From Eq. 11 and Eq. 15 it follows that the matrix of the homogeneous system (I−Ps) is

a diagonally dominant matrix. Therefore, the matrix has full rank, and Eq. 15 has only the

zero solution. As a result, we can conclude that the stationary distribution ρ is symmetric

with respect to the straight line connecting the state n and the state 3n in Fig. 1, i.e.

ρi = ρ2n−i if 0 ≤ i ≤ 2n (16)

ρi = ρ6n−i if 2n+ 1 ≤ i ≤ 4n− 1 (17)
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B. Distribution monomodality

In order to prove the second point, it is necessary to investigate the signs of the differences

between the probabilities of neighboring states of the Markov chain. In detail, Eq. 9 can be

premultiplied by Td, a 4n-by-4n matrix with entries defined as

Td(i, j) =







































1 if j = i

−1 if j = i+ 1 ∧ j ≤ 4n

−1 if i = 4n ∧ j = 1

0 otherwise

. (18)

The premultiplication consists in subtracting equations that correspond to neighboring

states, i.e. subtracting the (i+ 1)-th equation of Eq. 9 from the (i)-th equation for 1 ≤ i ≤

4n− 1, and the first equation from the last.

The transformed equation can be written as the linear system:

(I − Pd)ρd = b. (19)

Where I is a 4n-by-4n identity matrix, and ρd ∈ R
4n is a new set of variables defined as

ρd = Tdρ. The entries of the 4n-by-4n matrix Pd are

Pd,(i,j) =























0 if j > 2n

a|i−j| ifj ≤ 2n ∧ i ≤ 2n

a2n−|i−j−2n| otherwise

.

and the entries of b are

b(i) = a|2n−i+1|ρ2n − a2n−|2n−i|ρ0. (20)

From the symmetry of ρ shown in Eq. 16, it results that ρd can be determined completely

after the sole determination of its entries ρd(i) for 0 ≤ i ≤ n − 1 ∨ 2n ≤ i ≤ 3n − 1.

Additionally, b(i) can be simplified by using the identity ρ0 = ρ2n.

If we define ρds ∈ R
2n as ρds = (ρds1,ρds2)

T where ρds1 = (ρd(0), ρd(2), . . . , ρd(n−1)) and

ρds2 = (ρd(2n), ρd(2n+1), . . . , ρd(3n−1)), and bds ∈ R
2n as bds = (bds1, bds2)

T where bds1 =
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(b(1), b(2), . . . , b(n)) and bds2 = (b(2n+1), b(2n+2), . . . , b(3n)), the following linear system is ob-

tained

Pdsρds = bds





I − Pds1 0

−Pds2 I









ρds1

ρds2



 =





bds1

bds2



 . (21)

Where Pds is a (2n)-by-(2n) matrix. Additionally, both the matrices I − Pds1 and Pds2

are (n)-by-(n) and the vectors ρds1, ρds2, bds1 and bds2 are (n)-dimensional. The entries of

the matrices Pds1 and Pds2 and of the vectors bds1 and bds2 are defined respectively as

Pds1(i,j) = a|i−j| − a|i−(2n−(j−1))|

= a|i−j| − a2n+1−i−j (22)

Pds2(i,j) = a2n−|i−j| − a2n−|i−(2n−(j−1))| (23)

= a2n−|i−j| − ai+j−1 (24)

bds1(i) = (a2n−i+1 − ai) ρ0

bds2(i) = (ai−1 − a2n−i) ρ0.

From Eq. 22 and the inequality ai > aj (i < j) (see Eq. 11), all the entries of Pds1 and

bds2 are positive and all the entries of Pds2 and bds1 are negative.

Let us consider ρds1. From Eq. 21 it follows

(I − Pds1)ρds1 = bds1. (25)

The matrix (I−Pds1) of Eq. 25 is strictly diagonally dominant because of the relationships

of Eq. 11. For this reason, the matrix is invertible and the real parts of all its eigenvalues

are positive.

Additionally, all the off-diagonal entries of (I −Pds1) are negative because the all entries

of Pds1 are positive as shown in Eq. 22. This means that the matrix (I−Pds1) is a Z-matrix

for definition of Z-matrix (Z = (z(i,j)); z(i,j) ≤ 0, i 6= j).

The matrix (I − Pds1) is thus Z-matrix with eigenvalues whose real parts are positive,

i.e. it is an M-matrix. Its inverse (I − Pds1)
−1 is a positive matrices, i.e. the inverse matrix

13



entries are non-negative. In each row of the inverse there must be at least a positive entry,

otherwise the matrix would not have full rank. Therefore, in the solution of Eq. 25 ρds1 =

(I − Pds1)
−1bds1 all the entries of ρds1 are negative because all entries of bds1 are negative

and all entries of (I − Pds1)
−1 are non-negative, and no row is completely null.

Next, let us focus on ρds2. Eq. 21 leads to the following equation:

ρds2 = bds2 + Pds2ρds1. (26)

Since all elements of bds2, Pds2 and ρds1 are positive, negative and negative, respectively, the

elements of ρds2 are all positive.

From the result of the above proofs, the sign of the i-th element of the vector ρd is:

sign(ρd(i)) =























−1 if 0 ≤ i ≤ n− 1

+1 if n ≤ i ≤ 3n− 1

−1 if 3n < i ≤ 4n− 1

(27)

From Eq. 27, it follows that the stationary distribution ρ is monomodal and that the

peak is located at the state n.

We can therefore state that, under the assumption B−1ABx′
t ≪ ∆u and assuming ∆u

sufficiently small for the linear approximation of g, Et = CBx′

t, an agent controlled by the

restricted MBR will follow a trajectory that with maximum probability corresponds to the

positive gradient direction at each point of the x′ space.

IV. SIMULATION

In order to clarify the meaning of the results of the proof, let us introduce two concrete

examples. As a first example, let us conduct a numerical simulation in which an agent moves

according to the MBR in a two dimensional state space. Let us define the dynamics of the

agent as follows:

xt+1 = Axt +But (28)

B = R

(

atan2(x
(2)
t , x

(1)
t ) +

3

8
π

)





10 0

0 1




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where xt = [x
(1)
t , x

(2)
t ] and the ut are two dimensional vectors, A is a two-by-two matrix and

R(θ) =





cos θ sin θ)

− sin θ cos θ



 (29)

is a two-by-two rotation matrix that depends non-linearly on the state xt. The evaluation

function E, which determines the behavior of the agent, is defined by the nonlinear function:

E = g(x)

= exp(−||x||) (30)

that has its only maximum x∗ in (0, 0)T . In the previous section, we did not investigate the

direction actually taken by the agent in the x coordinates and considered the movement just

in the x′
t coordinates, where the effect of ut is isotropic, for the convenience of the proof.

However, for the setup defined by Eq. 28, the direction taken by the agent with the

highest probability

can be easily computed as ū = Bu∗ where u∗ is given by

u∗T =
∂

∂u

[[

∂

∂t
E

]

x=xt

]

=

[

∂

∂x
E

]

x=xt

∂

∂u

[

∂

∂t
x

]

x=xt

=
− exp(−||xt||)

||xt||
xT
t R

(

atan2(x
(2)
t , x

(1)
t ) +

3

8
π

)





10 0

0 1



 . (31)

We note that the A can assume different forms, and the direction taken with the maximum

probability at each direction does not change, as long as (I + B−1AB)x′
t ≪ ∆u and the

effect of (I + B−1AB)x′
t does not invalidate the hypothesis that the evaluation function

linearization can be considered essentially constant for a sufficient number of time steps.

It is also interesting to note that Eq. 31 contains a term corresponding to the spacial

gradient [∂/∂x E]x=xt
even if the MBR takes as input only the sign of the temporal gradient

(in a discretized form).

Fig. 2 shows the vector field ū obtained from Eq. 31 and the trajectory obtained as the

average direction taken in a Monte Carlo simulation with 105 particles and ∆u = 10−4. We

notice a close agreement between the vector field computed analytically and the direction

actually taken by the particles.
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FIG. 2. (Color online) The averaged trajectory generated by the MBR starting from [4, 4]T and

the vector field ū calculated from the dynamics of the agent and the evaluation function.

We may also be interested in analyzing whether the SR effect observed in [10] for a

simplified, isotropic case is valid also in this case. More in detail, it is still unclear whether

or not the statistical dependence between ū and the distribution of the direction taken by the

particles is a concave function of the perturbation intensity η. Fig. 3 shows the relationship

between η and the mutual information of the agent’s motion directions and ū. The typical

SR curve can be clearly observed in this non-isotropic case as well.

As a second example, let us observe the behavior in a more highly dimensional space. In
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FIG. 3. (Color online) The mutual information between the agent’s direction and the direction ū

for different values of η.

detail, let us analyze the system

ẋt = xt + ut (32)

E = x(1) (33)

where x(1) denotes the first component of xt, for xt,ut ∈ R
n with n = 3, 5 and 10. Fig. 4

shows the distribution of the arccosine of the angle with the optimal direction [1, 0, . . . , 0]T

obtained with a Monte Carlo simulation.

We notice that, as expected, the density of the direction taken by the agent on the

hypersphere is a decreasing function of the angle with the optimal direction. The validity of

this property for high dimensional spaces makes MBR particularly interesting for research

fields outside biology, as was shown by preliminary experiments on real world robots with a

high number of degrees of freedom [30].
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V. DISCUSSION

In this paper, we studied the behavior of an extremely simple behavioral model, MBR,

that emerges as an abstraction of the movement of bacteria toward high nutrients concen-

trations. MBR, initially derived as a model for explaining how noise could influence bacteria

chemotaxis, reveals to be interesting in more general settings.

In detail, this paper provided an analytical investigation on the behavior taken by an

agent driven by MBR, and it shows that the behavior taken with the highest probability

corresponds to the one the steepest gradient of an evaluation function (for instance, the

food concentration) computed in a space where the effect of the input is isotropic. Under

the assumptions taken in the previous sections, any non null level of noise is sufficient to

generate this gradient following behavior.

Additionally, the paper reported simulation experiments that exemplify the results of the

analysis in concrete settings. In particular, we briefly analyzed the movement of agents with

a strongly nonlinear dynamics and the behavior of agents in highly dimensional spaces.

The presented minimalistic behavioral rule has a high potential in robotics applications.

Many robotic works, in fact, mimics animal chemotaxis for environmental monitoring of gas

leaks, drugs, explosives etc. [31, 32] or for the delivery of drugs [33].

Actually, we note a strong similarity between MBR and the biologically inspired rule

used in [34] and more recently in [35] and [36]. MBR, however, provides a generalization of

such rule to the n-dimensional case, and allows the control of robots of unknown dynamics,

as shown in [30, 37]. In addition, the results of this paper provide the guarantee that, under

opportune conditions, the trajectory taken on average corresponds to the steepest gradient.

Our previous works in the robotics field showed that the relationship between the ran-

domness in the MBR and the performance follows the classic stochastic resonance curve.

Future works will need to consider from a theoretical point of view how the noise intensity

η influences the statistics of the trajectory taken by a MBR-controlled agent. Intuitively

the noise intensity η regulates the probability in taking directions close to the gradient di-

rection (i.e. it influences how sharp the stationary distribution is) and how long it takes to

reach a stationary distribution from an arbitrary distribution (i.e. it influences the mixing

time of the Markov chain introduced in this paper). Once an analytical formulation will

be provided, it will be possible to both make better predictions on the behavior of living
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beings whose movement can be modeled by the MBR and choose the η that maximizes the

performance in engineering problems.
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(a)

(b)

(c)

FIG. 4. (Color online) Frequency of the arccosine (in degrees) of the angle between the optimal

direction [1, 0, . . . , 0]T and the direction taken by the agent in an n dimensional space, respectively

for n = 3 (a), n = 5 (b) and n = 10 (c).
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