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Abstract

Most humanoid soccer robot teams design the basic movements of their robots,
like walking and kicking, off-line and manually. Once these motions are considered
satisfactory, they are stored in the robot’s memory and played according to a high
level behavioral strategy. Much time is spent in the development of the movements,
and despite the significant progress made in humanoid soccer robots, the inter-
faces employed for the development of motions are still quite primitive. In order
to accelerate development, an intuitive instruction method is desired. We propose
the development of robot motions through physical interaction. In this paper we
propose a ”teaching by touching” approach; the human operator teaches a motion
by directly touching the robot’s body parts like a dance instructor. Teaching by
directly touching is intuitive for instructors. However, the robot needs to interpret
the instructor’s intention since tactile communication can be ambiguous. This paper
presents a method to learn the interpretation of the touch meaning and investigates
through experiments a general (shared among different users) and intuitive touch
manner.
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Fig. 1. Robovie Maker, a commercial motion development software developed by
VStone.

1 Introduction

Since the introduction of humanoid robot soccer competitions, small humanoid
robots have seen great progress in terms of both hardware and software. For
instance, walking has been extensively studied, and several advanced methods
for motion generation [1–6] have been proposed. Nonetheless, many teams
still rely on handcrafted motions. The most widespread way of realizing robot
movement is to specify the motion as a set of “frames”; that is, a set of
instants in time for which the position of each and every joint is provided
[7,8]. Those interfaces have one slider for each of the joints, and the user has
to choose the angle assumed by the joint at the frame being edited. Fig. 1
shows a commercial motion editor based on this design principle. Developing
motions with these low level interfaces requires much time and is not at all
straightforward for novice users. The user would instead be able to naturally
and intuitively teach motions to the robot if these “artificial” interfaces could
be avoided.

Our goal is to develop a method by which humans can intuitively edit a robot
motion without any special training. Observing how a dance instructor [9]
or a sport coach teaches motions, we notice that, with simple touches, the
instructor intuitively conveys plenty of information on how to modify the
trainee’s movement. Touch is particularly appealing as an intuitive method
for humans to teach robots, and has been employed to program robot arms,
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Fig. 2. The basic idea of teaching by touching: the user directly touch the robot to
teach how to modify the motion and the robot interprets the meaning of the touch.

for example, by Voyles and Khosla in [10] and, more recently, by Grunwal et
al. in [11] and by Yoshikai et al. in [12]. Taking inspiration from these facts,
an interface was designed in which the human operator modifies the motion
by touching the robot parts (Fig. 2). We intend to avoid the artificiality of
classical interfaces by adopting “teaching by touching”.

The teachers’ touching is a method of encoding and transmitting their internal
image of what the robot postures 1 should be. To make communication suc-
cessful, the robot must then interpret the meaning of these touches in terms of
adjusted body postures. However, for the robot this reconstruction process is
not a trivial task. Not only can different touches have the same meaning – for
instance, touching several different parts of the arm could all mean that the
arm should move backwards – but similar touches could have different mean-
ings depending on the context. For example if the robot is standing, touching
the upper part of one leg could mean that the leg should bend further back-
wards. However if the robot is squatting, the same touch could mean that the
robot should move lower to the ground by bending its knees (see Fig. 3).

This context dependency is not the only problem, since the style and method of
touching could be (in part or totally) user-dependent. To avoid this ambiguity
we could design a fixed protocol and force the user to use it. This, however,
would strongly reduce the intuitiveness of the teaching. Fig. 4 depicts this
fact. Suppose the user has an idea of the posture modification she/he would
like to apply (for instance, raise the leg). If the protocol is fixed the user
must decide which touch, according to the touch protocol, allows her/him to

1 The method is not restricted to modification of static postures. It is assumed
that an instructor touches the robot during its motion to tell when the modification
should be applied. Clearly there will be practical problems when this technique is
used with a real robot, instead of a 3D representation as was done here. Future
works must analyze which kind of dynamic motions are realizable by the presented
approach.
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Fig. 3. An example on why the meaning of touch is context based. The user touches
the robot in the same way, but the desired posture modification (bend the leg and
bend the knees, respectively) is different because the robot posture is different.

(a) Fixed protocol (b) Intention Estimation

Fig. 4. Fixing a protocol (left figure) requires the user to think which instructions
would allow him/her to perform the intended modification. If the robot is able to
adapt to the user, instead, it will be able to decode touch instructions freely given
by the user (right figure), and the user mental effort will be reduced.

make the desired modification (Fig. 4(a)). Conversely if the system is able to
adapt to the user and estimate his/her intention, the user just needs to touch
the robot spontaneously with no mental effort (Fig. 4(b)). In other words,
by making the robot’s instruction interpretation powerful enough we can let
the user express her/his intention without the need to learn and adapt to
an artificially designed protocol. We can therefore expect that such kind of
interface could reduce the time spent by inexperienced users.

As soon as we start to consider the development of such adaptive interfaces we
can hypothesize that while some touches will have the same meaning for most
users, others will have different meanings when provided by different people.
The results here presented provide a first verification of this initial guess.
Understanding to what extent the touch meaning is user dependent and in
general what is user dependent and what is not will allow us to decide which
elements of the touch instructions can be assumed as “generally recognized”
and therefore be built-in in future works. In other words, if a common touch
manner exists, we can use this knowledge to make the robot quickly adapt to
the users. Section 2 describes the developed interface, while section 3 describes
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the experiments performed to verify our hypotheses. The results are reported
in section 4 and an overview of the findings is provided in section 5. Section 6
summarizes the content of this paper and presents possible future directions.

2 Teaching by touching

2.1 Concepts

As briefly reported in the introduction, touch is very intuitive and effective for
interpersonal communication. However, often no direct mapping from touched
part to modified joint angle is perceived as natural, intuitive. In fact, this one-
to-one mapping would be quite similar to the one used in classic slider-based
interfaces.

The robot must be able to decode the user’s intention conveyed by the touch.
As explained in the previous section the system must be able to adapt its
touch instruction interpretation to the user. In our method, the robot at first
cannot interpret the user’s intention at all. When the user thinks the robot
cannot understand the intention of the touch instruction, the user teaches
the correct interpretation through another low-level protocol which is shared
between the user and the robot. The robot then comes to interpret the touch
instruction by supervised learning. Fig. 9 schematizes this approach. In detail
a classical slider-based interface was implemented to allow the user to provide
the meaning of touch instructions.

The examples can be collected on-line, during the development of robot mo-
tions. This brings two advantages. First of all no special session where the user
is required to provide how she/he would touch the robot to express certain pre-
defined modifications is required. Secondly the human operator can identify
when the system fails to predict her/his intention expressed through touch,
and can provide, by the shared protocol, the intended joint modification, so
that the mapping between touch instructions and estimated modification in-
tentions can be refined where it needs to be. Ideally the system therefore keeps
improving its knowledge base during the motion development and users need
to teach the meaning of the touch instructions less and less frequently.

The interface was designed following the classical “observe and correct” motion-
development approach, similar to a human dance or sports learning section.
In each teaching episode, the human teacher watches the robot performing a
motion, observes what is wrong or could be improved, and touches the robot’s
body parts to instruct the robot how to refine the motion. Since humanoid soc-
cer robots usually lack of touch sensors, we introduced virtual tactile sensors,
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Fig. 5. Motion development cycle.

Fig. 6. The simplified 3D model of Vstone’s Vision4G. The 3D model rendering
also shows the projection of the center of gravity onto the ground (represented by
a sphere on the ground) and its velocity (represented by an arrow).

i.e. the user interacts with a 3D representation of the robot, but obviously the
presented approach could be applied to direct physical interaction between
the robot and the user. Fig. 5 illustrates this development process.

The developed interface presents a time-line slider and the user, after selecting
the instant in which the motion should be modified, touches the robot’s 3D
representation by employing a touch screen or a mouse (Fig. 6).

Given a touch instruction the touch-interpreter module needs to convert it to
a modification of the current (selected on the time-line) posture. The modified
posture becomes a key-frame at the selected time, and the complete modified
motion is generated by linear interpolation between consecutive frames. Since
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the touch instruction meaning is context dependent, the learning algorithm
obtains as input not only the touch duration of each of the touch sensors but
also the contextual information. Currently the context consists of the angle
of each of the joints, the orientation (roll, pitch and yaw) of the robot, and
the velocity of the center of gravity. The joint angles are needed because the
meaning of touches may depend on the posture, as in the provided example
in which touching the lap means different things depending on whether the
robot is standing or squatting. Likewise, the meaning of a touch may also
depend on the orientation, for instance whether the robot is standing or ly-
ing down. Finally, touches may also depend on the velocity, especially if the
robot is moving fast (for instance if it is falling down). It is possible that the
velocity of each single link should also be included, however for the moment
we put off investigating this and other features for future work. Employing a
supervised learning algorithm and requiring the user to supply examples of
touch instructions and their desired interpretation allows the direct study of
the input-output couples, giving insights on the way humans intuitively use
touch to express their intention.

2.2 Learning algorithm

As described in the previous section, the role of the learning algorithm is to re-
alize a mapping between the tuple (touchinformation, context) and expected
intended modification of joint angles. Various approaches could be used to re-
alize this mapping, for instance neural and in particular RBF (Radial basis
functions) networks, but one solution that appears quite straightforward is
to employ the k-Nearest Neighbor algorithm. Despite its simplicity, this al-
gorithm performs very well and has been effectively employed in many fields
[13] like speech or character recognition, for instance in [14] and in [15]. Un-
like some other classification algorithms the output of the k-Nearest Neighbor
can be continuous, if the example classes can be expressed with continuous
numerical values. In such a case the output of the algorithm can be calculated
as an average (which can also be weighted by some function of the distance)
of the k nearest neighbor classes. In our case each output class is a vector,
containing the modification to apply to each joint and to have a mapping
without discontinuities we chose k = ∞.

More formally, each example (a point in a high dimensional space) consists of
an input Ii and an associated intended joint modification vector Mi. Given an
input I∗, the system output vector M∗ can be obtained by weighting the joint
modifications present in the collected examples Mi, with weights ωi calculated
employing the distance (in the high dimensional space) between the system
input I∗ and each example coordinates Ii. Concretely, indicating with E the
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number of collected examples

M∗ =
E

∑

i=1

ωiMi (1)

A straightforward use of the k-Nearest Neighbor algorithm with a Euclidean
or Mahalanobis distance function presents two problems in the realization of
the mapping between touch information and their context to a joint modifica-
tion. First of all “priority” should be given to the touch information over the
context. This is to avoid the output being determined mainly by the context
instead of by the pushed parts, as happens if the touch information is given no
priority over the other features of the input. As a trivial example, suppose a
user is focusing on a leg motion and therefore only provides examples involving
a leg, then when she/he will push on an arm this will cause the leg to move,
while for most users in such cases of no available knowledge the most reason-
able choice would probably be the null modification (no joint movement). This
kind of behavior is likely to happen since the context space dimension is very
large - one dimension for each degree of freedom plus six dimensions, three
for the robot orientation and three for the center of gravity velocity - so it is
very difficult to have, for a particular kind of touch pattern, enough examples
with different contexts, such that the touch pattern can be influential in most
of the contexts. This is what is usually required for the most basic features
of the mapping; for instance, pushing the right cheek should translate into
turning the head toward the left, regardless of the position of the legs or arms.
To solve this problem, given an input vector I∗ and in particular the touching
information T∗, the output M∗ is calculated considering only the examples
having a set of pressed sensors (i.e., sensor having a pushing duration greater
than zero) the same set of sensors pressed in T∗ or a subset of them. In other
words, indicating with n the number of sensors and with the notation T∗ [s]
and Ti [s] as the pushing duration of the s-th sensor in the system input T∗ and
in the i-th example touch information vector respectively, the i-th example is
considered if and only if

n
∨

s=1

(Ti [s] > 0)) ∧ (T∗ [s] = 0) (2)

is false. This is analogous to setting ωi equal to 0 in equation 1 for the examples
in which equation 2 holds. Some examples are shown in Fig. 7.

With this approach most of the counterintuitive behaviors are avoided and,
although as a drawback the generality of the mapping is limited and disconti-
nuities are introduced when the set of pressed sensors varies, a great speed-up
of the learning algorithm is achieved (in preliminary tests the measured speed-
up was slightly over 2000%). This allows the calculation and display of the
predicted joint modification in real-time, i.e., visual feedback of the interpreted
touch meaning while pushing a sensor.
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Fig. 7. Examples of considered and discarded examples applying the described rule.

The second problem arises from the fact that every distance is a symmet-
ric function. Suppose to have just one training example, where a sensor was
pushed for 300 milliseconds, and this corresponded to a single motor joint
change of 40 degrees. A user might naturally expect that pushing for less time
will cause a smaller change in that joint, while a longer press should produce
a larger joint angle change. Conversely the system behavior with a distance
based weighting would be that any touch on that sensor with duration dif-
ferent from 300ms, both longer and shorter, would result in a smaller angle
change. For instance, using as a weighting function

ωi =
1

1 + ‖I∗ − Ii‖

pressing the sensor for 200ms or for 400 ms would give the same modification.
Fig. 8 illustrates this problem.

To overcome this counterintuitive behavior, the weight ωi, by which the i-th
example output Mi is weighted, is calculated as a product of two factors αi

and βi, that is, ωi = αiβi. Given T∗, the touching information of the input
vector, and the various example touch information vectors Ti, αi is calculated
as

αi =
∏

s:Ti[s]>0

T∗ [s] /Ti [s]

This value keeps increasing (linearly) as the pushing time increases; thanks to
the condition s : Ti [s] > 0 if multiple sensors are touched and several examples
are considered in the calculation, increasing the pushing time of one sensor
will increase just the weight of the examples in which such sensor is pushed,
and will not vary the weights of other examples; The second factor βi accounts
for all information not used in the calculations of αi

• the sensor information T∗ [s] and Ti [s] for the sensors s such that Ti [s] = 0;
• the joint angles of the robot in the system input (P∗) and the angles recorded

in the i-th example Pi;
• the orientation present in the system input O∗ and the one of the i-th
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Fig. 8. Expected behavior versus the behavior obtained weighting the output by a
decreasing function of the distance

example Oi;
• the center of gravity velocity vectors V∗ and Vi, relative to the system input

and to the i-th example respectively.

It was chosen to calculate each βi as

βi =
1

1 + di

(3)

where di is, roughly speaking, a measure of the diversity of the current input
I∗ and the i-th example input Ii.

Denoting the Euclidean norm by ”‖‖”, di is given by

di =
√

∑

s:Ti[s]=0

(T ∗[s] − 0)2 + ‖P − pi‖
2 + ‖O − oi‖

2 + ‖V − vi‖
2

where each vector component is scaled by its variance in the example data set
since the units are heterogeneous.

The meaning of the way di is calculated is clearly understandable, since, apart
from the touching information, it corresponds to a Euclidean norm. The struc-
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Fig. 9. The developed interface employing examples of input (touch pattern) and
corresponding output (intended motion modification) converts touch instructions in
estimated intended motion modification.

ture of equation 3, instead, emerges from practical experiments: several de-
creasing functions were tested and the one which appeared to give the most
intuitive behavior, f(x) = 1/(1+x) was chosen. Obviously, a deeper and more
formal analysis should be conducted.

We can notice that the weighted average given as estimate of the desired
posture modification depends on the number of the samples. For instance if I∗
has distance 2δ from an example IA (with joint modification MA) and distance
3δ from two examples IB1 and IB2 with IB1 ≈ IB2 and MB1 ≈ MB2 then the
output will be more similar to MB1 ≈ MB2 than to MA. This has as advantage
that the effect of wrong examples can be canceled by providing new examples.
However, even if in practical experiments we never faced this problem, if the
density of the provided examples is highly heterogeneous this behavior could
be undesired. Modifications of the algorithm to make the output independent
of the density of the examples will be tackled in future works.
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3 Experiment

3.1 Realization of physical robot motions

To perform our experiment we employed VStone’s 2 VisiON 4G (see Fig. 10(a)),
a humanoid robot with 22 degrees of freedom used in the Robocup compe-
tition. A walking and a jumping motion were developed (actually since the
servo torque is not sufficient for liftoff given the robot’s weight, the jumping
motion was realized with the help of a rubber band pulling the robot up).

As already explained the robot is not equipped with touch sensors, so we
developed a simplified 3D model of the robot that was touched by the user
employing a touch screen(Fig. 6). This simplified representation models each
robot’s part by a box and each of the box faces simulates a single touch sensor
(so when one sensor is pushed we can assume that the user is applying a
force normal to the face). Multiple sensors can be clicked one after the other,
allowing to simulate a simultaneous pressure of multiple sensors. Each sensor
gradually changes its color from green to red while being pushed, so the users
have a visual feedback of the touch instructions they provide.

As specified in Section 2.1 the motion development consists in alternating

(1) motion editing, performed by touching the 3D model,
(2) execution of the motion on the real robot

To allow reviewing of the evolution of the motion each time the motion was
executed by the real robot the robot’s position and orientation were recorded
using a capture system from Motion Analysis Corp 3 .

3.2 Analysis of user dependency of the touch instructions

Once we verified the feasibility of the proposed method by practical realization
of motions on a real robot we conducted an experiment to obtain insights into
which features of the touch instructions are shared by human operators and
which strongly depend on the user. We asked six subjects (hereafter denoted
by A, B, C, D, E and F) to develop a walking and a kicking motion, two
fundamental capabilities required by a humanoid soccer robot. The subjects
are all Italian male computer science students, and their age is in the range

2 http://www.vstone.co.jp
3 For details see http://www.motionanalysis.com/applications/movement/

neuro/eaglesystem.html
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(a) (b)

Fig. 10. Vstone’s Vision4G and its simulated counterpart.

23-27 (mean 24.5, standard deviation 1.87). To assure all the users to be in ex-
actly the same condition we asked them to develop motions using a simulated
robot, instead of using the real robot as done in the previous experiments. We
simulated VisiON 4G in a custom made simulator based on ODE 4 . Actually
to allow faster execution times the simulator approximates the robot’s parts
as boxes, as visible in Fig. 10(b).

We asked the subjects to freely touch the robot to give commands and to teach
their meaning using the sliders when the robot did not understand them. Given
the test subjects’ similar background (all male computer science students) we
expected them to have provided very similar touch instructions. However, as
will be shown in the next session, the touching manner greatly varied, even in
this restricted experiment.

4 Results

4.1 Complexity of the touch instruction interpretation

As reported in the previous session a first validation of the proposed ap-
proach was realized by a single non experienced user developing a jumping
(see Fig. 11) and a walking motion. To have a preliminary comparison of
the motion development time required by the use of a classical interface and
by the proposed method we realized the same motion (jumping) with both
the interfaces: while developing the motion employing only the sliders took
over 40 minutes developing the motion using touch required just 17 minutes.

4 ODE is an open source library for simulating rigid body dynamics. See
http://www.ode.org/ for details.
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Fig. 11. Image sequence of the jump motion.

Although a single experiment is not sufficient to assure that the motion de-
velopment time is always much shorter using the proposed method we can
say that these preliminary results are encouraging. A statistically significant
test will be provided in future works. We also noticed that, as expected, the
system keeps improving its understanding of the touch meaning so the user
needs to provide the examples less and less frequently. Fig. 12 shows quan-
titative results obtained in the successive experiment, in which six subjects
were required to realize a walking and a kick motion. The X axis represents
the number of touches 5 while the Y axis is the ratio between the number of
examples provided by the user (when the system fails to estimate the user
intention) and the number of touches provided. As expected, for most of the
users, the need to provide the correct interpretation of the touch decreases
over time (the graphs in Fig. 12 on average correspond to decreasing slopes)
proving that the learning algorithm can correctly estimate the user intention,
at least partially. In fact if the system had always failed to understand the
touch meaning the graphs would have been horizontal lines, since the ratio
between examples and touches would have always been equal to one. We can
notice some fast increases of the ratio due to the pressure of sets of sensors
previously not used. For instance if the user teaches how to deal with the arm
sensor information she/he can modify the arm posture nearly exclusively by
touch but if then she/he starts to press the leg sensors she/he needs to provide
examples on how to modify the leg joints when such sensors are pressed.

To have insights on the complexity of the mapping from touch instructions
to joint modifications we checked whether a simple linear model could be
sufficient. We applied linear regression to the examples collected during the
development of the jumping and walking motions on the real robot. Hereafter
let us identify by JUMP and WALK the sets of examples acquired during the

5 A single touch can consist in multiple sensors being pushed at the same time.
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(a) Subject A
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(b) Subject B
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(c) Subject C
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(d) Subject D
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(e) Subject E
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(f) Subject F

Fig. 12. Ratio between the examples and the touches over time for the six subjects.
The X axis is the number of touches provided by the user. The graph indicates
the ratio between the examples provided by the user (when the robot mistook
to interpret the touch) and the number of touches. The vertical line present in
each graph indicates when the development of the walking motion finished and the
realization of the kicking motion began.

development of the two motions. Given the data set D, let us denote by XD the
matrix having as the i-th row the i-th example input (touch information and
context) followed by a 1 (to include the possibility of a constant term in the
mapping) and similarly let us indicate by YD a matrix having in the i-th row
the i-th example output (the joint modification provided by the user). Then,
YD = XDLD + ǫ (where ǫ is a matrix expressing the error due to the linear
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approximation) or, in other terms, YD ≈ XDLD. The matrices LD (where D
can be JUMP , WALK) were calculated by the least square method, that is

LD = (XT
DXD + αI)−1XT

DYD (4)

where the T superscript indicates the transpose operation, I is the identity
matrix, and α is a small number which can be interpreted as an estimate of the
standard deviation of a Gaussian noise affecting the data [16]. All the results
reported here were obtained setting it to 0.1.

The importance of the input features (given by the absolute value of the co-
efficient in LD) in determining a joint modification calculated in this way, at
least for the sensors, has a strong relationship with common sense, since, for
instance, the sensors identified as important for determining the head orienta-
tion are mainly the ones on the head. Nonetheless, the linear model seems not
articulated enough to capture the structure of the touching data and often
overfit them. A comparison with the k-Nearest Neighbor algorithm showed
that the latter performs better on validation data not used for the training.
More specifically:

(1) the matrices LJUMP , LWALK were calculated using the two “training sets”
by using (4);

(2) each of the matrices LD were used to predict the output for each of the
datasets (used as “test sets”), that is, ŶC,D = XCLD were calculated
for each possible combination of C and D (C and D can be JUMP or
WALK);

(3) the differences EC,D = ŶC,D − YC were calculated. The i-th row of EC,D

provides the error in the prediction of the i-th example of the test dataset
C when the linear model is constructed based on the dataset D;

(4) for each training dataset D and each test dataset C the average error
magnitude over all the examples of the test dataset was determined.

Similarly, the k-Nearest Neighbor algorithm (with the described weighting
schema) was tested giving each time as training set (set of examples used to
calculate the output) just one of the data sets. Table 1 provides a comparison
of errors made by the two algorithms; as can be seen especially observing
the second row, the k-Nearest Neighbor algorithm strongly outperformed the
linear model in the test.

These results supports our hypothesis that the mapping between touch in-
structions and desired joint modification is not trivial and cannot be explained
by a linear model. In detail, we can hypothesize that the mapping depends on
the context in a non linear way.
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Table 1
Average errors in the output prediction by linear regression and by k-Nearest Neigh-
bor algorithm.

Training Dataset Test Dataset LR error KNN error

JUMP JUMP 0.2846 0.1985

JUMP WALK 13.717 0.5938

WALK JUMP 2.0567 1.0198

WALK WALK 0.0314 0.0588

4.2 Analysis of user dependency of the touch instructions

After verifying that the proposed learning algorithm performs sufficiently well
in estimating the user intention, we carried on an experiment that aims at
identifying features of the teaching instructions that are shared between most
of the users. The knowledge of these common features could then be employed
in future works to speed-up the learning of the instruction meaning.

As a first step of this analysis we identified for each user which joints he moved
when he touched one sensor (possibly in combination with other sensors).
This allows us to identify if there are direct mappings between sensors and
joints that are intuitive for most of the users. In Fig. 13 (as well as in all the
subsequent figures 6 ) each row represents a sensor and each column represents
a joint. The rows are divided in groups by the position of the sensor:

(1) body
(2) head
(3) right arm
(4) left arm
(5) leg
(6) left leg

Similarly the columns are divided into four groups according to the part that
is moved by the corresponding joint:

(1) head
(2) right arm
(3) left arm
(4) leg
(5) left leg

6 Figures are available with colors and full resolution at http://robotics.dei.

unipd.it/~fabiodl/papers/material/ras08/.

17



(a) (b) (c)

(d) (e) (f)

Fig. 13. Relationship between sensors (rows) and joints (columns) for each of the
subjects. The thick lines divide the sensors (rows) and joints (columns) by the part
of the robot in which they are placed. B, H, RA, LA, RL, LL stand respectively
for body, head, right arm, left arm, right leg and left leg.

The sensors reported are just the ones used by at least one of the subjects.
In each figure the headers of the sensors and joints (respectively the row and
column headers) are colored darker if they were used by a user.

In Fig. 13 each intersection between the s-th sensor and the j-th joint is
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colored black if in at least one touch the s-th sensor was pressed and then it
was taught to move the i-th joint (and possibly other joints). We can observe
that even if we fixed the task and used subjects with similar background, the
mappings between sensors and joints are very different. To better grasp the
similarities and dissimilarities of these relationships between the mappings
we plotted Fig. 14(a). In this table the color of each entry indicates for how
many users the sensor corresponding to the row was pressed to move the joint
identified by the column. The color ranges from white (for the minimum value,
0) to black (for the maximum value, in the experimental data 5).

From Fig. 14(a) we notice that the combinations that appear more frequently
are the ones which map sensors to joints of the same limb (that is, the sensor-
joint combinations for which the row group and the column group). It is in fact
very reasonable that most of the users touch what they wanted to move. We
can see a correlation between the body sensors and the joints of the legs. The
reason is that the users pushed the robot’s body to bend the trunk, and this
is done by moving the hip joints. At first glance the relatively high correlation
between the sensors of one arm and the joints of the other (third row group and
third column group, fourth row group and second column group) is surprising.
A deeper analysis of the data showed that this is because most of the users
pushed both hands at the beginning to close the arms, which are opened in
the initial position (see Fig. 10(b)). It should be noted that if, after providing
these kinds of examples, the user pushes just one arm the other one is not
moved, because when inferring the meaning of a touch instruction the learning
algorithm ignores the examples that have pushed sensors which are not being
pressed in the provided touch instruction(see equation 2).

Observing the lower part of Fig. 14(a) we notice that just one subject touched
sensors on the left leg and moved the right one. By Fig. 13 we can see that
this was done by subject E. Unlike other people, E’s table shows a correlation
between the body and the arms. A direct analysis of the touch data showed
that user E pushed the robot’s belly and made it close the arms. He then
touched the left knee and taught the robot to move the left leg forward (and
not backward, as one could imagine). Since we never observed such kind of
touch instruction we contacted E again and learned that this subject gave a
very high-level meaning to the touch instructions. For instance with a single
touch on the belly he wanted to say “go to the normal posture”, considering
as normal to lie the arms along the body sides. He then tried to teach with a
single touch on a knee to make one step with that leg, i.e., to bring that leg
forward (swing leg) and adjust the other one to keep equilibrium.

Paying attention to the sensors of the body, which are quite particular because
they do not directly correspond to any joint, we can observe that subject A is
the one who more extensively used them. More specifically he pushed the robot
sides to make it swing, imagining the joints to be “elastic” and supposing that
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applying a force the robot will move accordingly (given also the constraints
posed by the ground). Actually this is the approach we expected for most
users, and it strongly resembles the Yamane and Nakamura’s “pin and drag”
model [18]. Also subjects B and D used a similar approach, though they seemed
to treat the interaction more abstractly. In detail, they identified one sensor
which could be associated with the joints they wanted to move and pressed
that part any time they needed to use that joint(s). This fact is easily observed
in Fig. 15 that reports the sensors used by each of the subjects: subjects
B and D employed very few sensors to develop all the motion. This strict
correspondence between the joints to move and the pushed sensor was not
maintained by subjects C and F, which used more sensors to express similar
joint modifications.

Analysis of the system behavior after it had been trained by each of the users
gives support to these ideas intuitively derived from direct observation of the
mappings. First of all we created a test set containing the touch instruction
and relative context of all the examples provided by the users. For each Ii, con-
sisting of a touch instruction and its context, we calculated the corresponding
predicted joint modification using the estimators trained by each of the users.
Let us denote by Mi,u the output of the estimator trained by user u when Ii

is given as input. We calculated the correlation between the mapping of each
couples of users as

corr(u1, u2) =















1 if u1 = u2

avg
i

(

Mi,u1
·Mi,u2

|Mi,u1 ||Mi,u2|

)

if u1 6= u2

i.e. when the two users are not the same person the correlation is given by
the average of the dot products of the outputs for the same input, otherwise
it is trivially one. Each output is normalized, so that scaling of the magnitude
of the joint rotations does not influence the coordination value. We derived a
“distance” between the user applying the monotonically decreasing function
to the coordination:

dist(u1, u2) = − log(‖corr(u1, u2)‖)

The choice of this function is arbitrary, and comes from the results of practical
experiments conducted in [20]. Finally we applied multidimensional scaling
[19] and obtained Fig. 16, a 2D representation of the differences between the
users’ mappings. We can here observe how B and D are near, E is far from
all the others and C and F are placed in another area. This quantitative
analysis seems to confirm our intuitions based on the direct analysis of the
tables representing the relationships between sensors and joints. In detail the
horizontal axis, along which the distance is much bigger, has a role similar
to what we identified as complexity of the mapping, while the vertical axis
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(a) (b)

Fig. 14. The number of users that used each sensor-joint combination (figure a) and
the number of times each combination was used by the users (figure b). The value
of the entries is represented by the darkness of the color (white for the minimum
value, black for the maximum one).B, H, RA, LA, RL, LL stand respectively for
body, head, right arm, left arm, right leg and left leg.

could represent, for the same complexity, variations in the mapping. We can
suppose that A appears near B and D in the low dimensional plot because for
many sensors users B and D decided a fixed mapping that is very similar to
the application of force to the robot, i.e. the consideration done by subject A.

Given the clear partition in at least three groups of users we can assume
the existence of strongly differing touching manners. Identifying them would
allow us to improve the system’s ability to interpret the touch instructions.
In future works the number of subjects will be increased to assure statistical
significance. Similar tests will be conducted also using real hardware as users
may behave differently interacting with a real 3D multi-DOF system.
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A B C

D E F

Fig. 15. For each subject the sensors touched are displayed coloring them white.
The robot is shown both from the front and from the back.
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Fig. 16. Representation of the difference between the user’s mapping obtained em-
ploying multidimensional scaling.

5 Discussion

As predicted, some parts of the mapping from touch instruction to joint mod-
ification are shared between the users, for instance for most of the users when
the hand is pressed it is intuitive to bring the arm down. Nonetheless analyz-
ing the touch data we can see that it would probably be more proper not to
fix any part of the mapping. Instead, the interface should be able to under-
stand the “level” of the instructions the user is providing. For instance in the
experimental data we can observe three levels, from the lower to the higher:

• a nearly fixed mapping from a small set of sensors to the joints (subjects B
and D) on which the context has little or no influence

• a mapping based on physical considerations (subject A); in this case, the
context, for instance the position of the ground, becomes crucial

• a very high level representation of the motion, where for instance just the
limb that should be moved is indicated by touching; at this level of abstrac-
tion a single touch corresponds to a motion primitive.

We can easily imagine that the implementation of these strategies is more
complex the higher the level of the interaction is, and that the role of the
context becomes more and more important. We can guess that to reach the
level suggested by subject E we will need to introduce task knowledge to fulfill
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such high expectations from the estimator. It is also possible to notice that
our approach is able to be trained to work as a fixed protocol as in Fig. 4(a),
but this protocol can be chosen runtime by the user (ex. users B and D) and
does not require the programmer to design it beforehand.

One interesting point that emerged in the analysis of the developed motions
is that all users realized the kick motion using the robot’s right leg, while
we gave no indications on which leg to use. Currently, we can provide two
hypothesis:

(1) since all the students are right leg dominant, they taught the kicking
motion thinking at what they usually do. It is in fact likely that persons
transfer their own motion image to the learner when teaching a motion.

(2) when the robot is watched from the front, the leg that appears on the
left is the robot’s right leg; since all students are used to read from the
left to the right, they could have picked up the “first” leg and developed
the motion using that one.

Since in the development of the walking motion not all the users executed
the first step with the same leg (four with the right leg and two with the
left one) we believe the correct hypothesis is the first one, but further in-
vestigations, conducted including left handed subjects, are required. If this
hypothesis is verified in future works we could employ the knowledge of the
human operator’s dominant hand or leg to improve the interpretation of the
touching instructions. Furthermore if a person subconsciously teaches a mo-
tion as she/he does, it could be said that the instruction is done without
mental load. Comparing the teaching by touching with the existing motion
editor system on this point would be an interesting future work.

6 Conclusions and future work

In this work we presented a system for manually developing robot motions
using touch instructions instead of a classical slider-based motion editor. We
made this system completely adaptive, so that the user is not forced to em-
ploy a pre-determined protocol. More specifically the user touches the robot,
sees how it moves and if the robot mistakes the interpretation of the touch
instruction the human operator provides an example of the “correct” (the one
that was desired) interpretation. In this work analyzing the touch examples
of six different subjects we could g insights into the meaning of the touching
instructions provided by the users. We could see that, as easily predictable,
some basic motions (for instance closing the arms) are converted by most of
the users into similar instructions and that usually users touch the limb they
want to move. We also noticed that different users gave different levels of ab-
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straction to the touch meanings, ranging from “when I press sensor s turn
joint j” (subject B) to “when I touch your a knee, execute a step with that
leg” (subject E).

Future work will need to address this finding. We plan to perform analysis of
many more subjects, asking them to perform more complex motions, where
most of the robot’s parts must be used in many different contexts, and identify,
for instance, whether there is a continuum of abstraction levels or, as could
be suggested by these preliminary results, if it is possible to identify few well
defined levels and associate the users to one of them. Given the experimental
data analyzed in this work we strongly believe that if the touch-interpreter
module will be able to identify the abstraction level adopted by the user then a
great improvement in the speed of its adaptation to the user can be achieved.
This would therefore allow the system to become very intuitive without requir-
ing each user providing many examples. A further possible extension of this
work is the introduction of more details on the touch instructions, for instance
the pressure and the direction of the force applied to the sensors. We conclude
stressing that the main purpose of this work is to study how touch can be
employed for robot motion programming by unexperienced users without any
emphasis on the maximization of the performances like the walking speed, for
which specifically devised algorithms can surely obtain better results.
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