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Abstract. In this paper we present a new method for generating hu-
manoid robot movements. We propose to merge the intuitiveness of the
widely used key-frame technique with the optimization provided by au-
tomatic learning algorithms. Key-frame approaches are straightforward
but require the user to precisely define the position of each robot joint, a
very time consuming task. Automatic learning strategies can search for
a good combination of parameters resulting in an effective motion of the
robot without requiring user effort. On the other hand their search usu-
ally cannot be easily driven by the operator and the results can hardly
be modified manually. While the fitness function gives a quantitative
evaluation of the motion (e.g. ”How far the robot moved?”), it cannot
provide a qualitative evaluation, for instance the “human-likeness” of the
movement. In the proposed technique the user, exploiting the key-frame
approach, can intuitively bound the search by specifying relationships
to be maintained between the joints and by giving a range of possible
values for easily understandable parameters. The automatic learning al-
gorithm then performs a local exploration of the parameter space inside
the defined bounds. Thanks to the clear meaning of the parameters pro-
vided by the user, s/he can give qualitative evaluation of the generated
motion (e.g. ”This walking gait looks odd. Let’s raise the knee more”)
and easily introduce new constraints to the motion. Experimental results
proved the approach to be successful in terms of reduction of motion-
development time, in terms of natural appearance of the motion, and in
terms of stability of the walking.

1 Introduction

It is widely accepted that robots will become part in everyone’s life in the near
future and that their use will not be limited to manufacturing chains in factories.
Emblems of this tendency are the humanoid robots, which structure and purpose
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is very different from classic robotic arms. Small size humanoids have recently
become more and more popular among robots, mainly for entertainment and
research purpose. This is due to the strong decrease in their cost in the last
few years. Small humanoids are usually less than 50 cm tall and actuated by
low voltage servomotors (around 5V) at each of the joints. See [11], [12] or [13]
for some examples. Though these robots are often simpler than big ones, the
number of their degrees of freedom (d.o.f.) is very high. For instance Kondo’s
KHR-2 HV has 17 d.o.f. while VStone’s Robovie-M has 22. Because of the high
dimensionality of the configuration space, generating motions for this kind of
robots is a complex task.

In general, three major strategies are adopted. The first one is about gener-
ating the motion off line, and then replaying it on the robot. The second one is
about calculating the motion online, so that all the information available can be
employed to produce an optimal movement. The third approach, that is placed
in between the previous two, consists in calculating the motion off line and then
adjusting it online depending on the data coming from the sensors, for instance
to assure stability. While of course online motion planning and generation usually
allows a better movement, nowadays off line motion generation (with or without
online correction) is widely employed, mainly due to the restrictions posed by
the limited computing power available on board of the robot. Several approaches
were proposed to generate the motion, for instance by splines [1], by truncate
Fourier series [2] or by central pattern generators. Nevertheless, the most basic
but, surprisingly, the most widespread way of realizing motions is still to specify
a motion as a set of “frames”, that is a set of time instants for which the posi-
tion of each joint is provided. The position to be assumed by each motor at each
time is usually obtained by a simple linear interpolation of the positions it must
assume in the previous and in the following frames. Figure 1 shows a commercial
motion editor based on this design principle, while [3] or [4] provide examples of
recent papers where keyframe-based interfaces are used. As easily observable in
all these examples, this kind of interfaces usually presents one slider for each of
the joints, which allows to choose the rotation angle assumed by the servomotor
at the frame being edited.

Some improvements were proposed, for instance [5] introduced an interface
where the motion is represented by Fourier coefficients calculated from control
points provided by the user and [6] introduced a system by which the user
develops movements by intuitively pushing the robot parts instead of acting on
sliders.

However, these approaches force the user to specify an exact configuration
of the joints, usually obtained through a trial and error process. On the other
hand many articles, like [7], [8], and [10] present results achieved specifying the
motion in a parametric way and letting a genetic algorithms determine good
parameter configuration. As a drawback when CPGs are employed the effect of
the parameters on the motion becomes often difficult to identify. This means
that the user cannot easily modify a resulting motion by directly varying the
parameters or impose constraints on the motion. This work aims at merging
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Fig. 1. Robovie Maker, a commercial motion development software developed by VS-
tone.

the classical, time consuming but easily understandable slider-based approach,
with genetic algorithms that automatically search for a good motion. In the
developed interface the user can specify a range of possible values instead of
a fixed joint position and relationships that should be maintained between the
joints. A genetic algorithm tries then to increase the value of a specified fitness
function - that describes the quality of the motion - identifying good values that
obey the constraints. If users notice bad features in the resulting motion, they
can easily modify the constrains of the movement and run the genetic algorithm
again. This paper is organized as follows. Section 2 introduces the advantages of
the proposed approach and illustrates the ideas underlying the implementation.
Section 3 describes how a walking pattern was obtained through the developed
method and the performed tests. Section 4 presents the results of the experiment
and is followed by a short section commenting these results. Finally,section 6 will
summarize the presented concepts and discuss the future work.

2 Main idea

A motion of a robot with n degrees of freedom can be defined by a function
f : R≥0 → M , where M ⊆ R

n i.e. that given a real positive or null number, i.e.
time, provides an n dimensional vector that specifies the position of each motor,



4 M. Antonelli,F. Dalla Libera,E. Menegatti,T.Minato,H.Ishiguro

that is some areas of M are not reachable, as the ones representing self collision
positions. Discretization of this space could also be considered to reduce the
search space. Nevertheless this space remains huge considering that the values
of n is around 20 for small humanoids available on the market. Let us consider
the space F of functions describing the movements of the robot, i.e. functions f
mapping time to motor positions. More formally, F is the space of functions hav-
ing R as domain and M as codomain. In this case too, it is possible to reduce the
search space considering domain and codomain discretization. We can also note
that the variation between consecutive positions is limited by the motor speed.
Nevertheless the dimension of F is, by definition, exponentially higher than M .
Therefore search algorithms (in particular local search algorithms like hill climb-
ing, simulated annealing or genetic algorithms) can explore just a very little part
of this space. Thus, strong constraints must be introduced in the search space.
With classical interfaces the user needs to completely specify the f function by
a trial and error process. When search algorithms are employed, instead, the f
function is nearly completely defined and it depends on few parameters which
values are determined by the search algorithm. In other terms, the search is not
done directly in F , but in a p dimensional space P , where p is the number of
parameters and |P | << |F |. The mapping between the points in P (parameter
sets) and the points in F (trajectories in M) can be very complex and highly non
linear, as it happens, for instance, when CPGs are employed and P dimensions
are the connection weights [8]. This fact has advantages as small variations in P
might correspond to big variations in F so that very distant points in F can be
sampled. The drawback deriving from this technique is that the meaning of the
parameters is difficult to understand so in many cases nearly no predictions can
be done regarding consequences of changing the value of one of them.

Conversely the approach adopted in this research is to work directly on M so
that the meaning of the parameters is straightforward. In details, the f function
is defined as a linear interpolation of key-frames (points in M), that is the move-
ment is given by linear transitions between consecutive motor configurations mi.
To make things even more easily understandable, each position mi is given by
a sum of basic activations of some joints aj , where the role of each activation
aj is very simple, like “raise the left arm” or “bring the right leg backwards”.
An activation is then simply a point in M having most of the coordinates equal
to zero (the joints that do not need to be moved for the intended purpose) and
the few coordinates used for each basic joint activation are defined in terms of
constants, parameters or sum of parameters. Of course it would be possible not
to introduce the concept of activations aj , and define directly the frames mi,
but, as will be clear in the experiment section, the introduction of basic acti-
vations allows their reuse in several frames and makes the process of defining
frames nearly trivial. Thanks to the vector nature of activations and frames,
each mi can also be expressed as a sum of ki,j ∗ aj , where each ki,j is a scalar
value. Figure 2 provides an example on what composing “activations” to create
“frames” means.
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Fig. 2. Three “activations” (i.e. basic joint movements) are composed to create a
“frame” (i.e. a posture at a certain time). Note that the distinctions between “ac-
tivations” and “frames” is introduced just for clarity, since both of them are simple
vectors describing the angle of each joint.

For each parameter appearing in the activations the user specifies the range
in which its value should be used. This allows the user to easily constrain the
movement directly, which is often a big advantage. In fact when search algorithms
are employed, if the parameter meaning is unknown the only way to constrain the
final movement is to introduce penalizing factors in the score/fitness function.
For instance, when developing a walking motion, an obvious fitness function
would be the distance covered in a certain amount of time. The result of the
algorithm could anyway be a motion where the robot moves fast by sliding
its feet without lifting them and without falling. It would be then necessary
to introduce a reward for lifting the feet in the fitness function, but deciding
how to weight the covered distance and the feet lift is very difficult. With the
approach taken in this paper, it is just necessary to choose a proper range for
the parameters (actually, joint angles) in the activation aj that has the role of
lifting the foot. Certainly it is possible to provide many other examples regarding
situations in which constraining the movement by using the fitness function is
difficult. For instance, imagine to define a fitness function for a “human-like”
gait. As it should be clear, instead, with the approach taken in this paper the
user can employ an easy fitness function, run the genetic algorithm, observe
the resulting motion and constrain the activations aj (or introduce new ones)
to correct the motion in the desired way. The genetic algorithm can then be
run again and this process can be carried on until the motion determined by the
genetic algorithm (and constrained by the user) is satisfactory. It is interesting to
note the generality of this method, since no assumptions are made on the robot
structure or on the desired movement. Therefore, even if the proposed approach
had been applied to a very standard task, walking, we’d like to stress that the
method we describe can be used for the realization of any kind of motion. We also
feel that reporting a comparison of this method with other techniques specifically
devised for the generation of walking motions is out of the scope of this paper.
Finally it is worth to state that the proposed method aims at allowing the user
to develop in an intuitive way and in short time a variety of motions, without



6 M. Antonelli,F. Dalla Libera,E. Menegatti,T.Minato,H.Ishiguro

a1 a2 a3 a4

a5 a6 a7 a8

Fig. 3. Activations used to define the walking motion. The figure on the left shows the
disposition of the Kondo’s KHR-2 degrees of freedom, each one labeled with a number.
The same numbers are used in the activation pictures to indicate the joints employed.
Dashed lines represent the left part of the body, continuous ones the right side.

the need to devise any mathematical description of the trajectories. Indeed, the
maximization of the performance is not one of the purposes of this work.

3 Realization of a walking motion

In our experiments a Kondo KHR-2HV was used. This is a small humanoid
robot with 17 degrees of freedom, 34 cm tall and weighting about 1.3 Kg. For
time reasons and to avoid hardware damages, preliminary tests were conducted
using a simulator, namely USARSim. See [9] for a description of this simulator.
A walking motion was developed for this robot using the proposed approach.
In detail, first some “activations” ai, that is basic set of joint modification used
to create reusable features of postures were defined. Later, using these “activa-
tions”, “frames” mj ,

Eight basic activations, also depicted in figure 3, were defined.
More precisely

– a1 defines the basic posture of the robot during walking, consisting in slightly
bending the knees (turning therefore the ankles too) and turning the hip
joints so that the trunk is slightly bent forward. This activation defines
three parameters, pposture,thigh, pposture,knee, pposture,ankle corresponding to
the three joints mentioned (their values are equal for both legs).
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m1 m2 m3 m4 m5 m6 m7 m8

Fig. 4. Frames designed to have a walking motion.

– a2 and a3 define, respectively, the action of lifting up the right and the left
foot. Two parameters, plift,thigh and plift,knee are defined and represent,
respectively, the thigh angle and the knee angle. The ankle is moved so
that it maintains parallel to the ground (it is rotated by the opposite of the
sum of the knee and thigh angles). For these two activation,as well as for
the ones described hereafter the same parameter defines the position of the
corresponding joints in the two legs.

– a4 and a5 are used to bring backwards, respectively, the right and the left
leg, by turning the thigh and the knee. Also in this case, two parameters
pback,thigh and pback,knee are defined for these joints while the ankle degree
of freedom is used to keep the foot parallel to the ground.

– a6 and a7 provide the actions of rotating, respectively, the right and left
shoulder joints to swing the arms. Each of these activations has just one
parameter, parmrotate,shoulder which defines the shoulder angle.

– a8 consists in rotating the thigh joints by an angle set by a parameter,
pswing,thigh, and the ankles by the opposite angle, so the legs keep parallel
and the body moves in the frontal plane.

Given these activations, the definition of the frames was straightforward:

m1 = a1 + a5 − a8 m2 = a1 + a3 + 1
2a6 − a8

m3 = a1 + a4 + a6 −
1
2a7 m4 = a1 + a4 + 1

2a6

m5 = a1 + a4 + a8 m6 = a1 + a2 + 1
2a7 + a8

m7 = a1 + a5 −
1
2a6 + a7 m8 = a1 + a5 + 1

2a7

For simplicity, in the current implementation the time between any two consec-
utive frames (mi and mi+1) is the same and is a parameter determined by the
genetic algorithm (in other terms, the speed is a parameter too).
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3.1 Genetic algorithm

As understandable from the previous subsection, the genetic algorithm must
determine 10 parameters, 9 of which are appearing in the activations and the
remaining one is the time between frames. Each parameter was coded as a real
value, and for each of them a search range was provided. We used a popula-
tion of S = 20 individuals, let evolving for 50 generations. To evaluate each
individual a quite simple fitness function was employed. Assume the robot is
standing in the XY plane, headed toward the X direction at the beginning
of the evaluation. The fitness function of individual Pi is given by f(Pi) =
√

max
{

0, max {0, xT }
2 − |yT |

}

+ 50 ∗ sT , where xT and yT are the coordinates

of the robot, expressed in cm, reached in 20 seconds and sT is 0 if the robot felt
down within these 20 seconds and 1 otherwise, i.e. it is a bonus for individuals

that do not fall down. The term

√

max
{

0, max {0, xT }
2
− |yT |

}

is used to give

higher scores to individuals that walk further, giving less credits to the individual
that do not proceed straight (on average, in 20 seconds) or proceed backwards.
A simpler function like xT − |yT | could have been used. Anyway in this case
the evolution prefers individuals that just stand at the initial position over indi-
viduals that moved far but have yT > xT . The employed function instead gives
an higher fitness to walking patterns that make the robot move forward, unless
yT > x2

T , which could be considered as a side walk. For evolution between suc-
cessive generations a ranking selection was chosen; in details, the Z individuals
of the population are ordered by decreasing fitness. Let us denote by Pi the in-
dividual of the population appearing as the i-th in the ranking. The individuals
P1 . . . Pk with fitness equal to at least half the the fitness of P1 are then identified
(i.e. k, 1 ≤ k ≤ Z, is determined) and only these are considered to produce the
following generation. Tests were conducted applying both crossover and then
mutation. More precisely, when taking individuals at random the probability of
taking Pi is given by

℘ (Pi) =
k − i + 1
∑k

j=1 j
=

k − i + 1

k ∗ (k + 1)/2

Firstly two individuals Pa and Pb were picked up at random, and the resulting

individual Pc was obtained taking each gene from Pa with probability f(Pa)
f(Pa)+f(Pb)

and from Pb with probability f(Pb)
f(Pa)+f(Pb)

. Mutation was then applied on Pc, and

particularly each gene was modified (with probability ℘mutation = 1) multiplying
its value by a random number in the [0.75, 1.25) range.

4 Experimental results

The approach presented in this paper, with the activations and frames reported
in the previous section, successfully led to a walking pattern on simulation.
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During the development of the motion we modified the motion constrains, and
in detail the parameter ranges, three times. Initially plift,thigh and plift,knee

were given a range of [0, π/2] but the algorithm always chose very low values
for these 2 parameters and the robot just slided the foot, giving a stable but
not human like walking pattern. The lower value was then increased to π/8.
Surprisingly after this modification the algorithm tended to select values close
to the maximum of the range. The evolution tended also to prefer very fast and
small steps over slower and longer ones. To account for this we increased the
minimum time between frames from 10ms to 100ms. The maximum value of the
lateral swing (pswing,thingparameter), instead, was decreased from π/4 to π/8.
These modifications of the range show the advantage of the proposed method,
i.e. the clear meaning of the parameters allows to constrain and improve the
motion very easily. Table 1 reports the ranges of each parameter in the initial
population, their values on the best individual obtained in simulation during 50
generations and the values for the best individual in the real world determined
with the last 10 steps of evolution on the real robot. Angles are expressed in
radians, times in seconds. Note that for all the individuals of the first generation
each parameter is set to the medium value of its range. The fitness of the best

Table 1. Values of the parameters

Parameter Range Best,simulation Best,real robot

pposture,thigh

ˆ

π
2
−

π
16

, π
2

˜

1.388 1.4801
pposture,knee

ˆ

π
2
−

π
16

, π
2

˜

1.428 1.4403
pposture,ankle

ˆ

π
6
−

π
16

, π
2

+ π
16

˜

0.3316 0.5195
plift,thigh

ˆ

π
8
, π

3

˜

0.3927 0.3826
plift,knee

ˆ

π
8
, π

4

˜

0.7854 0.2826
pback,thigh

ˆ

π
8
, π

4

˜

0.7854 0.2489
pback,knee

ˆ

π
8
, π

6

˜

0.1992 0.0981
parmrotate,shoulder

ˆ

π
16

, π
4

˜

0.6882 0.4961
pswing,thigh

ˆ

π
32

, π
8

˜

0.1470 0.2240
time [0.1, 0.4] 117.2 140.3

individual found using the simulator is 181.38, corresponding to an individual
proceeding for 131.38 cm in the X direction and 4.03 in the Y direction. On
the real robot the distances reduced to 48.9 cm and 4.3 cm in the X and Y
direction respectively. This is due to the increase of the inter-frame time and
to the reduction of friction between the feet and the ground in the real world
compared to the simulated case.

5 Discussion

Observing section 3 it is possible to understand how easy it is to define motions in
terms of “activations” and “frames”. Employing the method for the development
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Fig. 5. Snapshots of the walking pattern achieved on the real robot.The time between
successiva images is 150 ms.

of a walking pattern, a very important movement for the Robocup competition,
we could verify that the approach is, as expected, less time consuming (at least
for operator time) than directly setting each joint. In fact, while designing a
walking pattern by a slider based interface took about eight hours, the design of
frames and the adjustments on the range took less than three hours to the same
user. The achieved speed is not very high, anyway the walking is very stable, in
fact the robot walked for over seven minutes without falling. We strongly believe
that inserting new frames to refine the motion improvements of the motion could
be easily achieved. While these tests are of course too limited to completely prove
the efficacy of the presented method, these preliminary results are encouraging
and suggest this could be a good direction for further research.

6 Conclusions and future work

This work presented a simple approach to develop motions for small sized hu-
manoid robots. Our method is structured as follows: the user provides a set of
“activations” that indicate the joints required to execute a basic action. The
joint positions can be specified in terms of relationships between the joints and
possible ranges. By using weighted sums of these activations the human operator
is able to build “frames”, i.e. key positions to be assumed by the robot during
the movement. Each parameters is bounded within a range also specified by the
user. Once the genetic algorithm has detected a good set of parameters (that
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is, parameters that provide a high value for the fitness function) the user can
verify if the motion is satisfactory. If this is not the case, instead of changing
the fitness function (an often complex process) s/he can directly edit the ranges
to modify the constraints on the motion in a straightforward way. This actually
happened three times during a walking pattern used as a test-bed of the ap-
proach. Our approach is fast to implement, since it requires nothing more than
writing a standard genetic algorithm (or any search algorithm, like policy gra-
dient) and linear interpolation. The main drawback of this method is the time
required by the genetic algorithm to calculate a good set of parameters. In the
current implementation a single virtual robot is moved in the simulated world
in real time. In order to have good evaluations of the fitness each individual is
tested three times. The evaluation of each individual takes therefore one minute.
The code has a client server architecture that allows to run multiple evaluations
simultaneously. In the experimental setup two PCs were used. The time required
to evolve for 50 generations was then 8 hours and 20 minutes, since it is possible
to run just one instance of the simulator on one PC. Future work will therefore
have the purpose of adapting the current system to a non-realtime, lightweight
simulator to decrease the computation time.
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