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y gradient. This gives the user little
ontrol over the resultant motions, whi
h might look awkward. We propose a methodology to set the CPG parameters byuser intera
tion, in detail by tou
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ribe the elements of the developed system and verify its feasibilityby the realization from s
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h of a 
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tionMany animal and human rhythmi
 movements, like walkingor 
hewing, are 
ontrolled by Central Pattern Generators thatmake the system automati
ally entrain to the environment andtherefore adapt and re
over from disturban
es [1, 2℄.In order to have a similar robustness on roboti
 systems, thisstru
ture is mimi
ked and several CPG models are applied to
ontrol different kind of robots [3, 4, 5, 6, 7, 1℄. In parti
u-lar, in many works ea
h a
tuator is 
ontrolled (with positionor torque 
ontrol) by an os
illator 
omposed of a 
ouple ofneurons, representing the extensor and �exor neurons. In or-der to allow syn
hronization between the joints the os
illatorsare inter
onne
ted, usually by weak 
oupling. The sensoryfeedba
k is then opportunely introdu
ed to have entrainmentbetween the environment and the robot.The movement generated by the CPG depends on a hugenumber of parameters, 
onsisting of the neuron model param-eters and the weight inter
onne
tions. These are usually setby automati
 sear
h algorithms su
h as geneti
 algorithms [8℄,poli
y gradient [9℄ or reinfor
ement learning [10℄.One of the drawba
ks in using these te
hniques is that theuser has little 
ontrol over the resulting motions. In fa
t theprogrammer
an express the quality of themotion only in termsof a �tness/s
ore/evaluation fun
tion. Imagine that the userwants to develop a 
rawling motion for a humanoid robot andthat the optimization 
riterion used by a geneti
 algorithm toevaluate the motion quality is the velo
ity. The derivedmotionwould probably 
ontain movements that would look awkwardand the overall movement would be similar to 
anter, whileoften the purpose is to get a baby-like movement that makesthe robot pro
eed at a reasonable speed. In other words, inmany 
ases we 
annot easily repla
e human evaluation with amathemati
al formulation.Manually setting ea
h CPG parameter would anyway beboth time 
onsuming and not intuitive for unexperien
ed usersthat 
annot predi
t how 
hanging a parameter valuewillmodifythe motion.In this paper we propose to have the user 
reate the mo-tion by setting the CPG parameters through intera
tion withthe robot. Among the possible 
ommuni
ation means (verbal


ommuni
ation, learning by wat
hing [11℄, et
.) we de
idedto utilize ta
tile intera
tion, a very powerful and natural wayof 
ommuni
ation in human-human and human-robot intera
-tion [12℄. In parti
ular, with our approa
h the user 
an tou
hthe robot while this is performing the motion to tune the CPGparameters and therefore 
hange the resultant motion.This implies, of 
ourse, that the relationships between pa-rameter 
hanges andmovement 
hanges should be predi
table.Se
tion 2 reports the details on the easily predi
table os
illa-tor network we employed. Mapping tou
h patterns to motionmodi�
ations and expressly to CPG parameter 
hanges is notstraightforward, sin
e several features like the amplitude ofthe movement or the velo
ity of ea
h joint motion should be
hanged by tou
h. Therefore, in se
tion 3 we illustrate thetou
h proto
ol de�ned for our experiment. We will report re-sults of an experiment 
ondu
ted with a simulated humanoidrobot in se
tion 4 and 
on
lude the paper in se
tion 5.2. CPG NetworkWhile often the purpose of a CPG network is prede�ned (forexample, make the robot walk) we would like to derive a quitegeneral stru
ture for the network. More pre
isely in the net-work stru
ture designwemust fo
us in having a network suitedfor tea
hing by tou
hing, instead of aiming at a 
ertain task andoptimize the 
onne
tions 
onsequently. Users intera
ting withthe robot must be able to predi
t the 
onsequen
es of their
ommands. In other terms, when a tou
h pattern is per
eivedand the intended motion modi�
ation is identi�ed, it must be
lear how to 
hange the parameters to obtain the desiredmove-ment alteration. This implies that one of themain requirementsin the 
hoi
e of the os
illator model is to have a predi
tablesystem.In existing resear
h numerous types of os
illators were pre-sented (Rayleigh,VanDer Pol [5℄,Matsuoka's [13℄, et
.). Hopfos
illator was 
hosen for its simpli
ity and predi
tability. Thepredi
tability of the system is also strongly in�uen
ed by theinter
onne
tions between the os
illators. Os
illator networkspresent in literature present essentially �ve stru
tures:1. 
hain [2℄, used mainly for snake robots



2. star [14℄, that is a �pea
emaker�/ �
lo
k� os
illator pro-vides a syn
hronizing signal to all the others3. tree [15℄, where essentially the os
illators are 
onne
tedas a tree, from the proximal to the distal joints4. 
onne
tionbetweenhomologous joints [5℄, i.e. joints witha similar fun
tion5. full 
onne
tion between the os
illators [16℄We opted for a star stru
ture, whi
h allows all the os
illatorsto be syn
hronizedwithout unpredi
table intera
tions betweensubgroups of os
illators. More pre
isely ea
h of the n degreesof freedom of the robot is 
ontrolled by one os
illator, and afurther �
lo
k� os
illator provides a referen
e signals for allthese os
illators. Let us identify by C0 the referen
e os
illatorand by Cj , 1 ≤ j ≤ n the os
illators 
ontrolling the robotjoints,Using the 
omplex number representation for the Hopf os-
illator [17℄ we have for the j-th os
illator, 0 ≤ j ≤ n

żj = γ
(

µj − |zj |
2

)

zj + iωjzj + Fj(t)

mj = ℜ{zj} + oj

(1)Where:
• zj ∈ C is the state of the os
illator
• mj ∈ R is the 
ontrol signal for the a
tuator
• γ is a 
oef�
ient for the speed of re
overy after perturba-tion [18℄
• µj ∈ R, µj ≥ 0 
ontrols the amplitude of the os
illation
• ωj ∈ R, ωj ≥ 0 
ontrols the os
illation frequen
y
• Fj(t) is an external perturbation signal
• oj is an offset value used to set the position around whi
hthe joint os
illatesWe de
ided to restri
t to periodi
 motions, and to ensure ratio-nal ratios between the frequen
ies of os
illation of ea
h pair ofjoints we set

ωj = pjω0 (2)
1 ≤ j ≤ n, pj ∈ N. In the 
urrent implementation we do notuse any feedba
k signal, so F0(t) is zero (the main 
lo
k is notin�uen
ed by anything, but in further implementation we planto introdu
e a signal from the gyros
ope) while for 1 ≤ j ≤ n

Fj(t) = weiφj z
pj

0
(3)that is Fj(t) 
onsists essentially in the perturbation from the
lo
k os
illator that permits syn
hronization of the system.The referen
e signal z0 is elevated to the power pj so the fre-quen
ies of the os
illator and of the perturbation are 
lose. Thesimilarity of the frequen
ies leads to an easier syn
hronizationand a predi
table phase between the j-th os
illator and the ref-eren
e one [19℄. The 
oef�
ient w determines the 
ouplingstrength between C0 and the other os
illators while the term

eiφj allows to 
hange the phase differen
e between the 
lo
kos
illators and the other ones. In the 
urrent implementation
µ0 = 1,w = 0.1 and γ = 1000.

3. Tou
h proto
olAs previously stated a proto
ol that maps tou
hes on the robotsensors into parameter 
hanges must be de�ned. In detail we
an imagine for simpli
ity the situationwhere ea
h robot's linkis a parallelepiped and that ea
h fa
e 
onstitutes a tou
h sensor.We need to 
onvert a series of tou
hes on the sensors to CPGparameter 
hanges. Sin
e this work aims ex
lusively at verify-ing the feasibility of the approa
h, we de
ided to simplify thesystem as mu
h as possible and employed a reasonable stati
mapping between the user a
tions and the parameter 
hanges.We also assume the tou
h sensors to be binary and measurejust their pressure time. Resear
h on the identi�
ation of thefeatures of intuitive tou
h proto
ols is of 
ourse of fundamentalimportan
e, and preliminary works in this dire
tion had beenpresented in [20℄. From Equations 1 and 2 it is possible to seethat for ea
h joint we 
an 
ontrol
• the amplitude of the os
illation of ea
h joint, by µj

• the frequen
y of the movement of ea
h joint, by pj

• the phase of the movement, with respe
t to the main os-
illator, through the parameter φj

• the zero position (offset) around whi
h the joint moves,by ojand 
hanging ω0 we 
an 
hange the global speed of the move-ment. We adopted, mostly arbitrarily, the following proto
ol.When a sensor s is pushed we determine the most distal joint,along the kinemati
 
hain, that 
auses a movement of the sen-sor 
enter in the dire
tion perpendi
ular to the sensor surfa
e.More formally we assume the robot's main body (in our 
asethe torso of a humanoid robot) is �xed in the spa
e. We denotebyns the ve
tor perpendi
ular to the pushed sensor surfa
e andby dj the ve
tor representing the derivative of the position ofthe 
enter of the pushed sensor when the j− th joint is rotated.Let j1, j2, ...jd be the indi
es of the joints pla
ed between therobot's main body and the link where the sensor is lo
ated, inorder from themost proximal to themost distal; we identify thejoint js su
h that ρs =< ns, djs
> 6= 0 and < ns, djk

>= 0for s < k ≤ d. If this joint doesn't exist we simply ignore thesensor pressure (unless it is on the main body, as will be spe
-i�ed later). On
e js is determined the phase of joint js (∠zjs
)is used as a time referen
e. Expressly the pushing time τjsis measured in terms of phase differen
e between the releasetime and the pushing time, 
ounting for the phase resettings(i.e. the differen
e is positive, monotoni
ally in
reasing and
an be larger than 2π). We distinguish the following 
ases:

• If τjs
> ΘO (the user pushes for a very long time) theoffset parameter is 
hanged a

ording to the applied for
e,i.e. ojs,new = ojs,old + sgn(ρjs

)∆O , where sgn is thesign fun
tion.
• If ΘA < τjs

≤ ΘO the amplitude parameter is updatedby the value sgn((ρjs
∗ mjs

)∆A where mjs
is the valueof the output at the pushing time.

• If the user pushes for a time τjs
≤ ΘA, releases the sensorand doesn't push it for a timeΘP then the phase parameter

φjs
is updated su
h that in the following 
y
les the 
losestmaximum of os
illation o

urs at the pushing time, i.e.the quantity−∠(mjs

∗zjs
) is added to φjs

, where zjs
and

mjs
are 
onsidered at the pushing time.



Figure 1: S
hematization of the tou
h patterns re
ognized by thesystem. The presen
e of a line indi
ates the pressure of a sensor. Thephase 
hange axis(time referen
e) is also reported.

Figure 2: Stru
ture of the robot, pi
ture of the real robot and itssimulated 
ounterpart.
• If the user pushes for a time τjs

≤ ΘA, releases the sensorand before a phase 
hange of ΘP pushes the sensor againthen pjs
is in
rementedor de
remented respe
tively if thisse
ond pushing time τjs,2 is greater or lower than ΘA.

• Similarly, if the user pushes the robotmain body for a time
∆φ0 ≤ ΘA releases the sensor and before a phase 
hangeof ΘP pushes the sensor again then ω0 is in
reased orde
reased by the quantity ∆ω0

respe
tively if the se
ondpushing time is greater or lower than ΘA.In our implementation all the ∆ and Θ values are 
onstants,expressly ΘO = π, ΘA = π
6
, ΘP = 2π

3
, ∆O = ∆A = π

12
,

∆ω0
= 1. 4. ExperimentsIn order to test the feasibility of the approa
h we developed,from s
rat
h, a 
rawling motion for a humanoid robot. Spe
if-i
ally we used a simulator based onODE that models VStone'sVision4G1. The tou
h is simulated bymouse 
li
ks,whose time1See http://www.vstone.
o.jp and http://www.ode.org for Vi-sion4G and ODE, respe
tively.

Figure 3: S
reenshots of the developed 
rawling motion.length is measured and used to modify the CPG parameters.Employing a simulator is a strong simpli�
ation be
ausewe 
an easily dis
riminate the user tou
h from self tou
hesand 
onta
t with the ground. Apart this aspe
t, however, ourapproa
h is appli
able to real robots, and in fa
t future ex-periments will be 
ondu
ted using Vision4G. One detail to be
onsideredwhen employing the real hardware is that self 
olli-sions, generated by some CPG parameter settings, 
ould 
auseservomotor breakdown. The self 
ollisions must be predi
tedonline therefore the 
omputation should be very fast. The 
ol-lision dete
tion 
an in any 
ase be ina

urate. More pre
isely,while we should assure that 
ollision positions are dis
arded,we are not required to re
ognize ea
h 
ollision free posture assu
h, i.e., we 
an redu
e the set of allowed postures to in
reasethe 
omputation speed. We thus 
hose to model ea
h link bya (bigger) parallelepiped, and limit the 
omputation to the 
ol-lision of those parallelepipeds. Note that in
reasing the sizeof the parallelepiped we 
an simply obtain a �safety margin�.The realized 
ollision 
he
ker, employed even in this prelimi-nary experiment 
ondu
ted on a simulator, is able to performaround 17000 
ollisions per se
onds on the robot's CPU.Starting with µj = oj = φj = 0 and pj = 1, 1 ≤ j ≤ nthe 
rawling motion was developed by a a single user in 56minutes. The user employed 57 amplitude 
hanges, 39 phase
hanges, 22 offset 
hanges and 2 frequen
y 
hanges to obtaina satisfa
torymovement a

ording to his subje
tive evaluation(s
reenshots are presented in Fig. [?℄). Table 1 reports the �nalvalues obtained for the CPG parameters that were altered fromtheir initial 
onditions. The �nal value for ω0 is 3.256.



Table 1: Final values obtained by user intera
tion.
X

X
X

X
X

X
X
X

Joint Parameter
µj pj φj oj3 0.5236 1 0.6599 0.78544 0.2618 1 1.6120 -0.52365 0 1 0.7172 0.52366 0.5236 1 2.3118 07 0.2618 1 2.2020 0.78548 0.7853 1 5.6918 -0.523611 0 1 5.6814 015 0.2618 1 1.2783 -1.047216 0.2618 1 0 1.047217 0.2618 1 0 018 0.2618 1 0 05. Con
lusionsThis paper proposes to employ human-robot intera
tion as away to set the parameters of a CPG. This allows 
ontrolling theresultant motion (and therefore generate the expe
ted move-ment, in terms, for instan
e, of similarity to humanmotion) bytuning all the parameters in a naturalway. We des
ribed a Hopfos
illator network that ensures predi
tability, a basi
 require-ment if we want the user to be able to intuitively 
hange theparameters. To maximize the usability of the system we em-ployed ta
tile intera
tion, a very dire
t way of 
ommuni
atingthe desired motion modi�
ation. We de�ned a tou
h proto
olthat allows to 
hange amplitude, frequen
y, phase and offset ofthe movement of the robot's joints and present how to 
hangethe CPG parameters in response to user tou
hes.As a validation we developed a 
rawling motion using ex-
lusively the proposed te
hnique. We stress that purpose of theexperiment is not to a
hieve the fastest 
rawling speed whi
his possible but to a
hieve a motion satisfa
tory for the user(in terms, for instan
e, of similarity to human movements).Obviously the motions obtained with this approa
h 
ould beused as initial solutions to be optimized with 
lassi
al auto-mati
 methods. Further tuning, for instan
e to assure perfe
tmovement symmetry or to maximize the 
rawling speed 
ouldbe also performed but this is out to the s
ope of this paper.Future works will need to measure quantitatively the advan-tages of the presented approa
h. More pre
isely we shouldevaluate how often automati
ally optimized motions appearsatisfa
tory to the user (i.e. 
ompare our approa
h to motionsderived from geneti
 algorithms or poli
y gradient) and studythe advantages over dire
t input of the parameters values w.r.t.simpli
ity of motion development, for instan
e 
omparing themotion development time. As previously stated we will alsoneed to study the features of a good tou
h proto
ol, whi
h was�xed nearly arbitrarily in this preliminary work. Finally futureresear
h will need to 
onsider te
hniques to dis
riminate be-tween user tou
hes, self tou
hes and 
onta
t with the �oor, aproblem here avoided employing a simulator but that must beta
kled when working with a real robot.Referen
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