Robot control inspired by Escherichia Coli chemotaxis

Fabio DallaLibera*, Shuhei Ikemoto**, Takashi Minato***,
Hiroshi Ishiguro™ ***, Emanuele Menegatti*

*University of Padova, Italy
**Osaka University

***JST ERATO

Living beings like bacteria search food using extremely simple strategies that reveal to be very robust.
From this observation we derive an algorithm for robot control. Most literature on the topic defines basic
robot behaviors that are used to mimic bacteria movement in the physical space. This paper proposes instead
to work directly in the motor command space, allowing the robot to determine itself the control signals to
use. The strategy underlying the algorithm consists in simply repeating control signals that lead to condition
improvements. Counterintuitively, adding random perturbations to the control signal being repeated im-
proves the performances. A model of the phenomenon is provided and an algorithm for automatic choosing
the perturbation magnitude is proposed. Results of experiments on the robustness and practical applicability
of the approach are reported. In particular we show that the algorithm is able to perform robot naviga-
tion even when no information on the robot structure is available and the robot undergoes hardware damages.

Key Words Search, Motion Generation, Random Walk

1. Introduction

Living beings like bacteria often employ very simple but
robust strategies to locate food sources. For instance, Es-
cherichia Coli performs a random walk biased toward in-
creasing concentrations of nutrients [1]. In particular this
bacterium has only two way of moving, rotating clockwise
or counter-clockwise. When it rotates counter-clockwise
the rotation aligns its flagella into a single rotating bundle
and it swims in a straight line. Conversely clockwise ro-
tations break the flagella bundle apart and the bacterium
tumbles in place. The bacterium keeps alternating clock-
wise and counterclockwise rotations. In absence of chem-
ical gradients the length of the straight line paths, i.e.
the duration of counter-clockwise rotations, is indepen-
dent of the direction. The bacterium therefore essentially
performs a random walk. In case of a positive gradient
of attractants, like food, Escherichia Coli instead reduces
its tumbling frequency. In other terms, when the condi-
tions are improving the bacterium proceeds in the same
direction for a longer time. This simple strategy allows
to bias the overall movement toward increasing concen-
trations of the attractant, despite the simplicity of the
mechanism and the difficulties in precisely sensing the
gradient. This methodology has been applied to robot
navigation in [2]. It was shown that while gradient de-
scent is faster for tracking a single source, biased random
walks perform better in the presence of multiple and dis-
sipative sources and noisy sensors and actuators. Fur-
thermore the stochastic nature of the algorithm prevents
it from getting stuck in local minima.

In [2] two basic movements, proceed straight and
change direction randomly, are defined beforehand and
the control algorithm switches between these two behav-
iors, prolonging the straight runs when the conditions

improve (e.g. when the robot is getting closer to the
goal). This approach strongly limits the robustness over
unexpected hardware failures. In fact, if due to hardware
damages one of these basic movements does not operate
as expected in many cases it will not be possible to ac-
complish the tasks.

A vast literature on recovering from hardware damages
is available, ranging from failure detection [3] to very ad-
vanced works on self-modeling [4]. However, simply ap-
plying the random walk directly in the motor command
space can reveal sufficient to obtain robustness to hard-
ware failures in many cases. Concretely, operating ran-
dom walk in the motor command space introduces the
possibility of exploring new motor commands that utilize
the available hardware configuration.

This kind of approach is employed by our algorithm,
reported in Section 2. Roughly speaking, the algorithm
simply selects a random control signals and keeps repeat-
ing it as long as the robot’s conditions improve. We then
show the very unintuitive fact that adding random per-
turbations to the selected action can improve the per-
formances. For instance, adding random perturbations
of appropriate magnitude can decrease the reaching time
in a navigation task. We provide an explanation of the
phenomenon and propose an algorithm for automatically
adjusting the perturbation magnitude.

Section 3 reports experimental results. We show that
the algorithm is able to control systems that include high
dimensionality, strong nonlinearities, low-pass filtering ef-
fects or dead time. Simulation results with a mobile robot
indicate that the algorithm can be applied to practical
problems such as driving a mobile robot toward a goal
without knowing the robot structure. Furthermore, the
flexibility of the algorithm allows it to bring the robot to
the goal even if substantial hardware damages occur.

0.8

v (performance)
°
b
2

o
>

0.55

0.5

performance
variance

0.45
0

n (perturbation)

Figure 1: Average performance obtained for different values of 7).
The graphs were obtained placing the particle in zg = [—1, 0] with
s = 1075, N = 10* and repeating the test 10° times.

Finally, Section 4 concludes the paper summarizing the
results.

2. Control Algorithm

As reported in the introduction, Escherichia Coli pro-
ceeds by movements in random directions, but when
moving toward increasing concentrations of nutrients the
movement in that direction is prolonged. Imagine now to
have a robot. Denote by u; € R? the motor control signal
and by AA; the change in the quality of the robot condi-
tions obtained by applying w;. For instance, AA; could
represent how much the robot got closer to a goal. Then
a behavior similar to the Escherichia Coli’s one could be
obtained by taking u;11 = us if AAy > 0 and selecting
ug41 randomly? if AA4; < 0.

However, if instead of u; 11 = u; we add a perturbation
uj = uj+n'R, R~ N(0,1) for each of the components
of the input (1 < ¢ < p), then for opportune values of
n* we can obtain a performances increase. As a simple
example, suppose to have a particle in a two dimensional
space that must approach a goal. Suppose the particle
to move by steps of fixed length s, along the angle indi-
cated by u;. Formally let € R? be the particle position,

cos(u N
u €ER, xy41 =24 + 5 [sin((uz; } Assume for simplic-
ity to have the goal located in [0,0]7, then the variation

of the robot conditions AA; is given by ||zz—1] — [|=|-
Finally, assume to express the performance as the aver-

age decrease in the distance to the goal for a single step,

W= HIOH*Jl\\[IN—lH_
Fig. 1 reports the average performance v for different

values of . For 0 < n < 0.33 the performance is better
than for n = 0.

Figure 2 provides an intuitive explanation. Suppose to
repeat the test a high number of times and observe the

'n the following we assume to select u; using a uniform distribu-
tion over the whole motor command space, but the results remain
essentially the same using different distributions.

0.5

. n=0
, BN — — —n=8.4E-3

0.451 S - — 1=0.350 ||

041

035

031

0.25[

Probability Density Function

3 2 -1 0 1 2 3
deviation from optimal direction [rad]

Figure 2: Distribution of the angles followed by the particle with
respect to the optimal direction obtained for 7 = {0, 0.0084, 0.33}.

distribution of the directions taken by the particle with
respect to the optimal direction (i.e. heading straight
to the goal). For 7 = 0 the distribution is approximately
uniform in the range [—7/2, w/2]. For opportune values of
71 the distribution becomes more peaky. In fact inefficient
paths along directions that are far from the optimal are
modified by the perturbations into directions that lead
to a negative AA; and are therefore discarded in a short
time. For too high values of 1 the perturbations start
to increase the probability of every orientation, including
the ones highly far from the optimal and, consequently,
the probability of choosing directions very close to the
optimal decreases.

Observing Fig. 1 we can see that the variance of u;
decreases when the performance increases. Intuitively,
if the system selects good inputs these can be used
for a long time, and the variance decreases. This can
be used as a criterion to dynamically adapt ni: we
estimate the variance of u! by picking some samples,
slightly increase(/decrease) 7!, and estimate the vari-
ance of u! again. If the variance decreased then we in-
crease(/decrease) ni once more, otherwise we decrease
(/increase) it.

Assuming to estimate the variance using just two sam-
ples? the algorithm becomes

wi - ul +niR if AA; >0
t+l random selection otherwise
t=11
i (up — U%—1)2
of = ——————

2
i J1/e
t+1 — 51%

2A higher number of samples provides a better estimate of the
variance and therefore of the variance change, but slows down the
adaptation. Note that, however, two samples are always sufficient to
guarantee a right estimation of the whether the variance increased
or not with a probability higher then 0.5.

if todd Aot > ol ,
otherwise

Figure 3: Average movement toward the goal by the particles for
different settings of the space dimension p.

ny otherwise

i nidi, if todd
Ner1 = ;

3. Experimental results

In order to evaluate the robustness and generality of the
presented algorithm we conducted a series of experiments.
At first we tested the performances of the algorithm as
the dimensions of the space increase. The experiment was
conducted placing 10* particles in a p dimensional space
at zo = [-1,0,...,0]7 € R? and assuming their position
to be modified by x;.1 = x; + s - u; where s = 1074,
Fig. 3 reports how much the particles got closer to the
goal in N = 10* steps as p varies. We notice that the
performance is reasonably high even for high values of p.

We then fixed p = 2, set the initial position of the
particles to xop = [10,10]7 and imposed s = 1073. We
firstly performed a test to check whether the adaptation
of ! works correctly. In particular, we identified the best
performance achievable by a constant value of), expressly
for n* = n? = n* = 0.0034 the particles got 8.234 units
closer to the goal in N = 10* steps. With the adaptive
algorithm the average distance traveled by the particles
toward the goal was 8.129, i.e. the 98.7% of the optimal
value.

To study the effect of noise in the measurement of AA;
we conducted an experiment where we switched the sign
of AA; with probability w. It resulted that the distance
traveled toward the goal decreases linearly increasing w,
reaching 0 for w = 0.5.

Next we checked whether the algorithm can cope with
nonlinearities. In this experiment, the movement of the
particles was set to 2}, = z} + s f*(u;) where f'(z) =

1 (sin(2rz+E)NT Q sin(2ma+£?)
T (sin(2rz+¢%))T Pisin(2rax+C?)

the sin function is applied element-wise and Q*, P* €
R2%2 and ¢%, (" € R? were randomly initialized. Figure 4
shows that the performance is very high for most of the
particles.

In order to verify whether the algorithm works with sys-
tems that include low-pass filter effects we then simulated
the case x¢441 = 2 +vr and v = (1 —107P)vp—1 + 10~ Puy.
Figure 5 shows the average performance as p varies. We
notice that for some settings of p the performance is
higher than with p = 0. This is due to a smoothing

arctan () In this expression

1000

particles

6
traveled distance

Figure 4: Distribution of the distance toward the goal traveled by
10% particles in N = 10% steps of size s = 102 using the nonlinear
functions f*(x).

travel distance

3 4
p (low pass effect)

Figure 5: Average movement toward the goal for different settings
of the low pass filter.

effect introduced by the low pass filter that makes the
trajectories more straightly headed to the goal.

Figure 6 reports the performance for a system that in-
cludes a dead time (delay). Expressly, we simulated the
case Xyy1 = Tt +us—g. Performance degrades as the dead
time increases, but does not reach 0, i.e. the algorithm is
still able to drive the particles to the goal whatever the
dead time is.

Using ODE?, we simulated a mobile robot equipped
with three spherical wheels having diameter of 15 cm.
The two front wheels are directly actuated by two in-
dependent motors whose maximum velocity is 0.5 rad/s
while the rear wheel is free to rotate in any direction. The
task is to reach a red hemisphere of radius 10 m placed at

30pen Dynamics Engine, a free library for simulating rigid body
dynamics. For details see http://www.ode.org.

traveled dist:
R S - N
T
I

T T I
80 100 20 140 160 180 200
d (dead time) [time steps]

Figure 6: Average movement toward the goal for different dead
time values.

(d)

Figure 7: The four damages simulated. (a) Reduced size of one
wheel. (b) Uncontrollability of one wheel (c) Rotation of the rotation
axis of one wheel (note the direction of the stripes) (d) Obscuration
of part of the acquired image.

a distance of 30m. The robot is equipped with an omni-
directional camera and the value of AA; is determined
observing the change in the number of red pixels in the
image. In particular, if the R component of a pixel is more
than double the maximum of the G and B components,
then the pixel is considered red.
We simulated the robot in five different conditions, in
the normal condition and with four types of damages (see
Figure 7):
1. one wheel size is reduced to two thirds of its normal
size

2. one wheel becomes uncontrollable, i.e. its movement
is completely random

3. one wheel rotation axis direction is turned 90 degrees
along the 7Z axis and becomes parallel to the longi-
tudinal axis, i.e. the rotation of the wheel instead
pushing the robot forward and backward pushes the
robot to the left or to the right

4. 20% of the camera image becomes obscurated

In all the cases the algorithm was able to drive the
robot to the goal. Fig. 8 reports the distribution of the
number of time steps required to reach the target.

In summary, the experiments conducted show that the
algorithm reveals to be very robust. It is able to work in
highly dimensional spaces and cope with sensory noise,
system nonlinearities, low-pass filtering effects and dead
time. Furthermore simulation experiments with a simu-
lated mobile robot suggest applicability to practical prob-
lems. In detail the algorithm performed well in driving
the robot to a goal despite a number of substantial hard-
ware damages.

4. Conclusions

This paper presents a control algorithm inspired by Es-
cherichia Coli’s chemotaxis. All relies on the simple as-
sumption that if a control signal improved the state of
the system, then applying the same signal for a while

will often give good results. The algorithm requires as

50 T T

I no damage
[small wheel
o1 [T uncontrollable tyre [
[wrong axis
I camera problem

40

trials

0
100...200 200...300 300...400 400..500 500...600 600...700 700...800 800...900 900...1000
steps required

Figure 8: Distribution of the time steps required to reach the target.
The time step was set to 5s, and the experiment was repeated 100
times for each robot condition.

input only a single binary value that indicates whether
the conditions improved or not during the previous time
step. This makes the algorithm applicable to a big class
of problems, as long as it is true that repeating commands
that improved the robot conditions have a good probabil-
ity to give further improvements in the successive steps.

We showed that, unexpectedly, if the control signal is
modified by random perturbations of opportune magni-
tude then the performances of this simple algorithm can
be improved. A two dimensional case is provided as an ex-
ample and used to derive an algorithm for the automatic
adaptation of the perturbation size. Results of several
tests that suggest the generality and robustness of the al-
gorithm were presented. In detail we showed that robust
navigation of a mobile robot toward a goal can be easily
achieved without any parameter tuning.

Future works will involve introducing learning in the
system. In detail, we can imagine to use the presented al-
gorithm as a way to collect statistics on the relationships
between the sensory information and the performance of
different motor commands. This could in turn be used to
extract information on the topology of the sensory state
and action space before starting to learn the optimal pol-
icy, i.e. the mapping that gives the correct action to take
given a certain perceived state.

References
[1] Adler, J. “The sensing of chemicals by bacteria”. Scientific
American, vol. 234, 40-47, 1976.
[2] Dhariwal, A., Sukhatme, G.S. and Requicha, A.A.G.

“Bacterium-inspired robots for environmental monitoring”. pp.
1436-1443.

[3] Scheutz, M. and Kramer, J. “Reflection and reasoning mecha-
nisms for failure detection and recovery in a distributed robotic
architecture for complex robots”. pp. 3699-3704. 2007.

[4] Bongard, J., Zykov, V. and Lipson, H. “Resilient machines
through continuous self-modeling”. Science, vol. 314(5802),
1118-1121, 2006. doi:10.1126/science.1133687.

