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∗∗∗JST ERATOLiving beings like bateria searh food using extremely simple strategies that reveal to be very robust.From this observation we derive an algorithm for robot ontrol. Most literature on the topi de�nes basirobot behaviors that are used to mimi bateria movement in the physial spae. This paper proposes insteadto work diretly in the motor ommand spae, allowing the robot to determine itself the ontrol signals touse. The strategy underlying the algorithm onsists in simply repeating ontrol signals that lead to onditionimprovements. Counterintuitively, adding random perturbations to the ontrol signal being repeated im-proves the performanes. A model of the phenomenon is provided and an algorithm for automati hoosingthe perturbation magnitude is proposed. Results of experiments on the robustness and pratial appliabilityof the approah are reported. In partiular we show that the algorithm is able to perform robot naviga-tion even when no information on the robot struture is available and the robot undergoes hardware damages.Key Words Searh, Motion Generation, Random Walk1. IntrodutionLiving beings like bateria often employ very simple butrobust strategies to loate food soures. For instane, Es-herihia Coli performs a random walk biased toward in-reasing onentrations of nutrients [1℄. In partiular thisbaterium has only two way of moving, rotating lokwiseor ounter-lokwise. When it rotates ounter-lokwisethe rotation aligns its �agella into a single rotating bundleand it swims in a straight line. Conversely lokwise ro-tations break the �agella bundle apart and the bateriumtumbles in plae. The baterium keeps alternating lok-wise and ounterlokwise rotations. In absene of hem-ial gradients the length of the straight line paths, i.e.the duration of ounter-lokwise rotations, is indepen-dent of the diretion. The baterium therefore essentiallyperforms a random walk. In ase of a positive gradientof attratants, like food, Esherihia Coli instead reduesits tumbling frequeny. In other terms, when the ondi-tions are improving the baterium proeeds in the samediretion for a longer time. This simple strategy allowsto bias the overall movement toward inreasing onen-trations of the attratant, despite the simpliity of themehanism and the di�ulties in preisely sensing thegradient. This methodology has been applied to robotnavigation in [2℄. It was shown that while gradient de-sent is faster for traking a single soure, biased randomwalks perform better in the presene of multiple and dis-sipative soures and noisy sensors and atuators. Fur-thermore the stohasti nature of the algorithm preventsit from getting stuk in loal minima.In [2℄ two basi movements, proeed straight andhange diretion randomly, are de�ned beforehand andthe ontrol algorithm swithes between these two behav-iors, prolonging the straight runs when the onditions

improve (e.g. when the robot is getting loser to thegoal). This approah strongly limits the robustness overunexpeted hardware failures. In fat, if due to hardwaredamages one of these basi movements does not operateas expeted in many ases it will not be possible to a-omplish the tasks.A vast literature on reovering from hardware damagesis available, ranging from failure detetion [3℄ to very ad-vaned works on self-modeling [4℄. However, simply ap-plying the random walk diretly in the motor ommandspae an reveal su�ient to obtain robustness to hard-ware failures in many ases. Conretely, operating ran-dom walk in the motor ommand spae introdues thepossibility of exploring new motor ommands that utilizethe available hardware on�guration.This kind of approah is employed by our algorithm,reported in Setion 2. Roughly speaking, the algorithmsimply selets a random ontrol signals and keeps repeat-ing it as long as the robot's onditions improve. We thenshow the very unintuitive fat that adding random per-turbations to the seleted ation an improve the per-formanes. For instane, adding random perturbationsof appropriate magnitude an derease the reahing timein a navigation task. We provide an explanation of thephenomenon and propose an algorithm for automatiallyadjusting the perturbation magnitude.Setion 3 reports experimental results. We show thatthe algorithm is able to ontrol systems that inlude highdimensionality, strong nonlinearities, low-pass �ltering ef-fets or dead time. Simulation results with a mobile robotindiate that the algorithm an be applied to pratialproblems suh as driving a mobile robot toward a goalwithout knowing the robot struture. Furthermore, the�exibility of the algorithm allows it to bring the robot tothe goal even if substantial hardware damages our.
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varianceFigure 1: Average performane obtained for different values of η.The graphs were obtained plaing the partile in x0 = [−1, 0]T with
s = 10−6,N = 104 and repeating the test 105 times.Finally, Setion 4 onludes the paper summarizing theresults. 2. Control AlgorithmAs reported in the introdution, Esherihia Coli pro-eeds by movements in random diretions, but whenmoving toward inreasing onentrations of nutrients themovement in that diretion is prolonged. Imagine now tohave a robot. Denote by ut ∈ R

p the motor ontrol signaland by ∆At the hange in the quality of the robot ondi-tions obtained by applying ut. For instane, ∆At ouldrepresent how muh the robot got loser to a goal. Thena behavior similar to the Esherihia Coli's one ould beobtained by taking ut+1 = ut if ∆At ≥ 0 and seleting
ut+1 randomly1 if ∆At < 0.However, if instead of ut+1 = ut we add a perturbation
ui

t+1 = ui
t + ηiR, R ∼ N (0, 1) for eah of the omponentsof the input (1 ≤ i ≤ p), then for opportune values of

ηi we an obtain a performanes inrease. As a simpleexample, suppose to have a partile in a two dimensionalspae that must approah a goal. Suppose the partileto move by steps of �xed length s, along the angle indi-ated by ut. Formally let x ∈ R
2 be the partile position,

ut ∈ R, xt+1 = xt + s ·

[

cos(ut)
sin(ut)

]. Assume for simpli-ity to have the goal loated in [0, 0]T , then the variationof the robot onditions ∆At is given by ‖xt−1‖ − ‖xt‖.Finally, assume to express the performane as the aver-age derease in the distane to the goal for a single step,
ψ = ‖x0‖−‖xN−1‖

N
.Fig. 1 reports the average performane ψ for di�erentvalues of η. For 0 < η < 0.33 the performane is betterthan for η = 0.Figure 2 provides an intuitive explanation. Suppose torepeat the test a high number of times and observe the1In the following we assume to selet ut using a uniform distribu-tion over the whole motor ommand spae, but the results remainessentially the same using di�erent distributions.
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Figure 2: Distribution of the angles followed by the partile withrespet to the optimal diretion obtained for η = {0, 0.0084, 0.33}.distribution of the diretions taken by the partile withrespet to the optimal diretion (i.e. heading straightto the goal). For η = 0 the distribution is approximatelyuniform in the range [−π/2, π/2]. For opportune values of
η the distribution beomes more peaky. In fat ine�ientpaths along diretions that are far from the optimal aremodi�ed by the perturbations into diretions that leadto a negative ∆At and are therefore disarded in a shorttime. For too high values of η the perturbations startto inrease the probability of every orientation, inludingthe ones highly far from the optimal and, onsequently,the probability of hoosing diretions very lose to theoptimal dereases.Observing Fig. 1 we an see that the variane of utdereases when the performane inreases. Intuitively,if the system selets good inputs these an be usedfor a long time, and the variane dereases. This anbe used as a riterion to dynamially adapt ηi

t: weestimate the variane of ui
t by piking some samples,slightly inrease(/derease) ηi

t, and estimate the vari-ane of ui
t again. If the variane dereased then we in-rease(/derease) ηi

t one more, otherwise we derease(/inrease) it.Assuming to estimate the variane using just two sam-ples2 the algorithm beomes
ui

t+1 =

{

ui
t + ηi

tR if ∆At ≥ 0

random selection otherwise

δi
0 = 1.1

σi
t =

(ui
t − ui

t−1)
2

2

δi
t+1 =

{

1/δi
t if t odd ∧ σi

t ≥ σi
t−2

δi
t otherwise2A higher number of samples provides a better estimate of thevariane and therefore of the variane hange, but slows down theadaptation. Note that, however, two samples are always su�ient toguarantee a right estimation of the whether the variane inreasedor not with a probability higher then 0.5.
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Figure 3: Average movement toward the goal by the partiles fordifferent settings of the spae dimension p.
ηi

t+1 =

{

ηi
tδ

i
t+1 if t odd

ηi
t otherwise3. Experimental resultsIn order to evaluate the robustness and generality of thepresented algorithm we onduted a series of experiments.At �rst we tested the performanes of the algorithm asthe dimensions of the spae inrease. The experiment wasonduted plaing 104 partiles in a p dimensional spaeat x0 = [−1, 0, . . . , 0]T ∈ R

p and assuming their positionto be modi�ed by xt+1 = xt + s · ut where s = 10−4.Fig. 3 reports how muh the partiles got loser to thegoal in N = 104 steps as p varies. We notie that theperformane is reasonably high even for high values of p.We then �xed p = 2, set the initial position of thepartiles to x0 = [10, 10]T and imposed s = 10−3. We�rstly performed a test to hek whether the adaptationof ηi
t works orretly. In partiular, we identi�ed the bestperformane ahievable by a onstant value of η, expresslyfor η1 = η2 = η∗ = 0.0034 the partiles got 8.234 unitsloser to the goal in N = 104 steps. With the adaptivealgorithm the average distane traveled by the partilestoward the goal was 8.129, i.e. the 98.7% of the optimalvalue.To study the e�et of noise in the measurement of ∆Atwe onduted an experiment where we swithed the signof ∆At with probability ω. It resulted that the distanetraveled toward the goal dereases linearly inreasing ω,reahing 0 for ω = 0.5.Next we heked whether the algorithm an ope withnonlinearities. In this experiment, the movement of thepartiles was set to xi

t+1 = xi
t + s · f i(ut) where f i(x) =

1
π

arctan
(

(sin(2πx+ξi))T Qisin(2πx+ξi)
(sin(2πx+ζi))T P isin(2πx+ζi)

). In this expressionthe sin funtion is applied element-wise and Qi, P i ∈
R

2×2 and ξi, ζi ∈ R
2 were randomly initialized. Figure 4shows that the performane is very high for most of thepartiles.In order to verify whether the algorithmworks with sys-tems that inlude low-pass �lter e�ets we then simulatedthe ase xt+1 = xt +vt and vt = (1−10−ρ)vt−1 +10−ρut.Figure 5 shows the average performane as ρ varies. Wenotie that for some settings of ρ the performane ishigher than with ρ = 0. This is due to a smoothing
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Figure 4: Distribution of the distane toward the goal traveled by
104 partiles inN = 104 steps of size s = 103 using the nonlinearfuntions f i(x).
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ρ (low pass effect)Figure 5: Average movement toward the goal for different settingsof the low pass �lter.e�et introdued by the low pass �lter that makes thetrajetories more straightly headed to the goal.Figure 6 reports the performane for a system that in-ludes a dead time (delay). Expressly, we simulated thease xt+1 = xt +ut−d. Performane degrades as the deadtime inreases, but does not reah 0, i.e. the algorithm isstill able to drive the partiles to the goal whatever thedead time is.Using ODE3, we simulated a mobile robot equippedwith three spherial wheels having diameter of 15 m.The two front wheels are diretly atuated by two in-dependent motors whose maximum veloity is 0.5 rad/swhile the rear wheel is free to rotate in any diretion. Thetask is to reah a red hemisphere of radius 10 m plaed at3Open Dynamis Engine, a free library for simulating rigid bodydynamis. For details see http://www.ode.org.
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(a) (b) ()
(d)Figure 7: The four damages simulated. (a) Redued size of onewheel. (b) Unontrollability of one wheel () Rotation of the rotationaxis of one wheel (note the diretion of the stripes) (d) Obsurationof part of the aquired image.a distane of 30m. The robot is equipped with an omni-diretional amera and the value of ∆At is determinedobserving the hange in the number of red pixels in theimage. In partiular, if the R omponent of a pixel is morethan double the maximum of the G and B omponents,then the pixel is onsidered red.We simulated the robot in �ve di�erent onditions, inthe normal ondition and with four types of damages (seeFigure 7):1. one wheel size is redued to two thirds of its normalsize2. one wheel beomes unontrollable, i.e. its movementis ompletely random3. one wheel rotation axis diretion is turned 90 degreesalong the Z axis and beomes parallel to the longi-tudinal axis, i.e. the rotation of the wheel insteadpushing the robot forward and bakward pushes therobot to the left or to the right4. 20% of the amera image beomes obsuratedIn all the ases the algorithm was able to drive therobot to the goal. Fig. 8 reports the distribution of thenumber of time steps required to reah the target.In summary, the experiments onduted show that thealgorithm reveals to be very robust. It is able to work inhighly dimensional spaes and ope with sensory noise,system nonlinearities, low-pass �ltering e�ets and deadtime. Furthermore simulation experiments with a simu-lated mobile robot suggest appliability to pratial prob-lems. In detail the algorithm performed well in drivingthe robot to a goal despite a number of substantial hard-ware damages. 4. ConlusionsThis paper presents a ontrol algorithm inspired by Es-herihia Coli's hemotaxis. All relies on the simple as-sumption that if a ontrol signal improved the state ofthe system, then applying the same signal for a while

will often give good results. The algorithm requires as
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Figure 8: Distribution of the time steps required to reah the target.The time step was set to 5s, and the experiment was repeated 100times for eah robot ondition.input only a single binary value that indiates whetherthe onditions improved or not during the previous timestep. This makes the algorithm appliable to a big lassof problems, as long as it is true that repeating ommandsthat improved the robot onditions have a good probabil-ity to give further improvements in the suessive steps.We showed that, unexpetedly, if the ontrol signal ismodi�ed by random perturbations of opportune magni-tude then the performanes of this simple algorithm anbe improved. A two dimensional ase is provided as an ex-ample and used to derive an algorithm for the automatiadaptation of the perturbation size. Results of severaltests that suggest the generality and robustness of the al-gorithm were presented. In detail we showed that robustnavigation of a mobile robot toward a goal an be easilyahieved without any parameter tuning.Future works will involve introduing learning in thesystem. In detail, we an imagine to use the presented al-gorithm as a way to ollet statistis on the relationshipsbetween the sensory information and the performane ofdi�erent motor ommands. This ould in turn be used toextrat information on the topology of the sensory stateand ation spae before starting to learn the optimal pol-iy, i.e. the mapping that gives the orret ation to takegiven a ertain pereived state.Referenes[1℄ Adler, J. �The sensing of hemials by bateria�. Sienti�Amerian, vol. 234, 40�47, 1976.[2℄ Dhariwal, A., Sukhatme, G.S. and Requiha, A.A.G.�Baterium-inspired robots for environmental monitoring�. pp.1436�1443.[3℄ Sheutz, M. and Kramer, J. �Re�etion and reasoning meha-nisms for failure detetion and reovery in a distributed robotiarhiteture for omplex robots�. pp. 3699�3704. 2007.[4℄ Bongard, J., Zykov, V. and Lipson, H. �Resilient mahinesthrough ontinuous self-modeling�. Siene, vol. 314(5802),1118�1121, 2006. doi:10.1126/siene.1133687.


