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∗∗∗JST ERATOLiving beings like ba
teria sear
h food using extremely simple strategies that reveal to be very robust.From this observation we derive an algorithm for robot 
ontrol. Most literature on the topi
 de�nes basi
robot behaviors that are used to mimi
 ba
teria movement in the physi
al spa
e. This paper proposes insteadto work dire
tly in the motor 
ommand spa
e, allowing the robot to determine itself the 
ontrol signals touse. The strategy underlying the algorithm 
onsists in simply repeating 
ontrol signals that lead to 
onditionimprovements. Counterintuitively, adding random perturbations to the 
ontrol signal being repeated im-proves the performan
es. A model of the phenomenon is provided and an algorithm for automati
 
hoosingthe perturbation magnitude is proposed. Results of experiments on the robustness and pra
ti
al appli
abilityof the approa
h are reported. In parti
ular we show that the algorithm is able to perform robot naviga-tion even when no information on the robot stru
ture is available and the robot undergoes hardware damages.Key Words Sear
h, Motion Generation, Random Walk1. Introdu
tionLiving beings like ba
teria often employ very simple butrobust strategies to lo
ate food sour
es. For instan
e, Es-
heri
hia Coli performs a random walk biased toward in-
reasing 
on
entrations of nutrients [1℄. In parti
ular thisba
terium has only two way of moving, rotating 
lo
kwiseor 
ounter-
lo
kwise. When it rotates 
ounter-
lo
kwisethe rotation aligns its �agella into a single rotating bundleand it swims in a straight line. Conversely 
lo
kwise ro-tations break the �agella bundle apart and the ba
teriumtumbles in pla
e. The ba
terium keeps alternating 
lo
k-wise and 
ounter
lo
kwise rotations. In absen
e of 
hem-i
al gradients the length of the straight line paths, i.e.the duration of 
ounter-
lo
kwise rotations, is indepen-dent of the dire
tion. The ba
terium therefore essentiallyperforms a random walk. In 
ase of a positive gradientof attra
tants, like food, Es
heri
hia Coli instead redu
esits tumbling frequen
y. In other terms, when the 
ondi-tions are improving the ba
terium pro
eeds in the samedire
tion for a longer time. This simple strategy allowsto bias the overall movement toward in
reasing 
on
en-trations of the attra
tant, despite the simpli
ity of theme
hanism and the di�
ulties in pre
isely sensing thegradient. This methodology has been applied to robotnavigation in [2℄. It was shown that while gradient de-s
ent is faster for tra
king a single sour
e, biased randomwalks perform better in the presen
e of multiple and dis-sipative sour
es and noisy sensors and a
tuators. Fur-thermore the sto
hasti
 nature of the algorithm preventsit from getting stu
k in lo
al minima.In [2℄ two basi
 movements, pro
eed straight and
hange dire
tion randomly, are de�ned beforehand andthe 
ontrol algorithm swit
hes between these two behav-iors, prolonging the straight runs when the 
onditions

improve (e.g. when the robot is getting 
loser to thegoal). This approa
h strongly limits the robustness overunexpe
ted hardware failures. In fa
t, if due to hardwaredamages one of these basi
 movements does not operateas expe
ted in many 
ases it will not be possible to a
-
omplish the tasks.A vast literature on re
overing from hardware damagesis available, ranging from failure dete
tion [3℄ to very ad-van
ed works on self-modeling [4℄. However, simply ap-plying the random walk dire
tly in the motor 
ommandspa
e 
an reveal su�
ient to obtain robustness to hard-ware failures in many 
ases. Con
retely, operating ran-dom walk in the motor 
ommand spa
e introdu
es thepossibility of exploring new motor 
ommands that utilizethe available hardware 
on�guration.This kind of approa
h is employed by our algorithm,reported in Se
tion 2. Roughly speaking, the algorithmsimply sele
ts a random 
ontrol signals and keeps repeat-ing it as long as the robot's 
onditions improve. We thenshow the very unintuitive fa
t that adding random per-turbations to the sele
ted a
tion 
an improve the per-forman
es. For instan
e, adding random perturbationsof appropriate magnitude 
an de
rease the rea
hing timein a navigation task. We provide an explanation of thephenomenon and propose an algorithm for automati
allyadjusting the perturbation magnitude.Se
tion 3 reports experimental results. We show thatthe algorithm is able to 
ontrol systems that in
lude highdimensionality, strong nonlinearities, low-pass �ltering ef-fe
ts or dead time. Simulation results with a mobile robotindi
ate that the algorithm 
an be applied to pra
ti
alproblems su
h as driving a mobile robot toward a goalwithout knowing the robot stru
ture. Furthermore, the�exibility of the algorithm allows it to bring the robot tothe goal even if substantial hardware damages o

ur.
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varianceFigure 1: Average performan
e obtained for different values of η.The graphs were obtained pla
ing the parti
le in x0 = [−1, 0]T with
s = 10−6,N = 104 and repeating the test 105 times.Finally, Se
tion 4 
on
ludes the paper summarizing theresults. 2. Control AlgorithmAs reported in the introdu
tion, Es
heri
hia Coli pro-
eeds by movements in random dire
tions, but whenmoving toward in
reasing 
on
entrations of nutrients themovement in that dire
tion is prolonged. Imagine now tohave a robot. Denote by ut ∈ R

p the motor 
ontrol signaland by ∆At the 
hange in the quality of the robot 
ondi-tions obtained by applying ut. For instan
e, ∆At 
ouldrepresent how mu
h the robot got 
loser to a goal. Thena behavior similar to the Es
heri
hia Coli's one 
ould beobtained by taking ut+1 = ut if ∆At ≥ 0 and sele
ting
ut+1 randomly1 if ∆At < 0.However, if instead of ut+1 = ut we add a perturbation
ui

t+1 = ui
t + ηiR, R ∼ N (0, 1) for ea
h of the 
omponentsof the input (1 ≤ i ≤ p), then for opportune values of

ηi we 
an obtain a performan
es in
rease. As a simpleexample, suppose to have a parti
le in a two dimensionalspa
e that must approa
h a goal. Suppose the parti
leto move by steps of �xed length s, along the angle indi-
ated by ut. Formally let x ∈ R
2 be the parti
le position,

ut ∈ R, xt+1 = xt + s ·

[

cos(ut)
sin(ut)

]. Assume for simpli
-ity to have the goal lo
ated in [0, 0]T , then the variationof the robot 
onditions ∆At is given by ‖xt−1‖ − ‖xt‖.Finally, assume to express the performan
e as the aver-age de
rease in the distan
e to the goal for a single step,
ψ = ‖x0‖−‖xN−1‖

N
.Fig. 1 reports the average performan
e ψ for di�erentvalues of η. For 0 < η < 0.33 the performan
e is betterthan for η = 0.Figure 2 provides an intuitive explanation. Suppose torepeat the test a high number of times and observe the1In the following we assume to sele
t ut using a uniform distribu-tion over the whole motor 
ommand spa
e, but the results remainessentially the same using di�erent distributions.
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Figure 2: Distribution of the angles followed by the parti
le withrespe
t to the optimal dire
tion obtained for η = {0, 0.0084, 0.33}.distribution of the dire
tions taken by the parti
le withrespe
t to the optimal dire
tion (i.e. heading straightto the goal). For η = 0 the distribution is approximatelyuniform in the range [−π/2, π/2]. For opportune values of
η the distribution be
omes more peaky. In fa
t ine�
ientpaths along dire
tions that are far from the optimal aremodi�ed by the perturbations into dire
tions that leadto a negative ∆At and are therefore dis
arded in a shorttime. For too high values of η the perturbations startto in
rease the probability of every orientation, in
ludingthe ones highly far from the optimal and, 
onsequently,the probability of 
hoosing dire
tions very 
lose to theoptimal de
reases.Observing Fig. 1 we 
an see that the varian
e of utde
reases when the performan
e in
reases. Intuitively,if the system sele
ts good inputs these 
an be usedfor a long time, and the varian
e de
reases. This 
anbe used as a 
riterion to dynami
ally adapt ηi

t: weestimate the varian
e of ui
t by pi
king some samples,slightly in
rease(/de
rease) ηi

t, and estimate the vari-an
e of ui
t again. If the varian
e de
reased then we in-
rease(/de
rease) ηi

t on
e more, otherwise we de
rease(/in
rease) it.Assuming to estimate the varian
e using just two sam-ples2 the algorithm be
omes
ui

t+1 =

{

ui
t + ηi

tR if ∆At ≥ 0

random selection otherwise

δi
0 = 1.1

σi
t =

(ui
t − ui

t−1)
2

2

δi
t+1 =

{

1/δi
t if t odd ∧ σi

t ≥ σi
t−2

δi
t otherwise2A higher number of samples provides a better estimate of thevarian
e and therefore of the varian
e 
hange, but slows down theadaptation. Note that, however, two samples are always su�
ient toguarantee a right estimation of the whether the varian
e in
reasedor not with a probability higher then 0.5.
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Figure 3: Average movement toward the goal by the parti
les fordifferent settings of the spa
e dimension p.
ηi

t+1 =

{

ηi
tδ

i
t+1 if t odd

ηi
t otherwise3. Experimental resultsIn order to evaluate the robustness and generality of thepresented algorithm we 
ondu
ted a series of experiments.At �rst we tested the performan
es of the algorithm asthe dimensions of the spa
e in
rease. The experiment was
ondu
ted pla
ing 104 parti
les in a p dimensional spa
eat x0 = [−1, 0, . . . , 0]T ∈ R

p and assuming their positionto be modi�ed by xt+1 = xt + s · ut where s = 10−4.Fig. 3 reports how mu
h the parti
les got 
loser to thegoal in N = 104 steps as p varies. We noti
e that theperforman
e is reasonably high even for high values of p.We then �xed p = 2, set the initial position of theparti
les to x0 = [10, 10]T and imposed s = 10−3. We�rstly performed a test to 
he
k whether the adaptationof ηi
t works 
orre
tly. In parti
ular, we identi�ed the bestperforman
e a
hievable by a 
onstant value of η, expresslyfor η1 = η2 = η∗ = 0.0034 the parti
les got 8.234 units
loser to the goal in N = 104 steps. With the adaptivealgorithm the average distan
e traveled by the parti
lestoward the goal was 8.129, i.e. the 98.7% of the optimalvalue.To study the e�e
t of noise in the measurement of ∆Atwe 
ondu
ted an experiment where we swit
hed the signof ∆At with probability ω. It resulted that the distan
etraveled toward the goal de
reases linearly in
reasing ω,rea
hing 0 for ω = 0.5.Next we 
he
ked whether the algorithm 
an 
ope withnonlinearities. In this experiment, the movement of theparti
les was set to xi

t+1 = xi
t + s · f i(ut) where f i(x) =

1
π

arctan
(

(sin(2πx+ξi))T Qisin(2πx+ξi)
(sin(2πx+ζi))T P isin(2πx+ζi)

). In this expressionthe sin fun
tion is applied element-wise and Qi, P i ∈
R

2×2 and ξi, ζi ∈ R
2 were randomly initialized. Figure 4shows that the performan
e is very high for most of theparti
les.In order to verify whether the algorithmworks with sys-tems that in
lude low-pass �lter e�e
ts we then simulatedthe 
ase xt+1 = xt +vt and vt = (1−10−ρ)vt−1 +10−ρut.Figure 5 shows the average performan
e as ρ varies. Wenoti
e that for some settings of ρ the performan
e ishigher than with ρ = 0. This is due to a smoothing
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Figure 4: Distribution of the distan
e toward the goal traveled by
104 parti
les inN = 104 steps of size s = 103 using the nonlinearfun
tions f i(x).
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ρ (low pass effect)Figure 5: Average movement toward the goal for different settingsof the low pass �lter.e�e
t introdu
ed by the low pass �lter that makes thetraje
tories more straightly headed to the goal.Figure 6 reports the performan
e for a system that in-
ludes a dead time (delay). Expressly, we simulated the
ase xt+1 = xt +ut−d. Performan
e degrades as the deadtime in
reases, but does not rea
h 0, i.e. the algorithm isstill able to drive the parti
les to the goal whatever thedead time is.Using ODE3, we simulated a mobile robot equippedwith three spheri
al wheels having diameter of 15 
m.The two front wheels are dire
tly a
tuated by two in-dependent motors whose maximum velo
ity is 0.5 rad/swhile the rear wheel is free to rotate in any dire
tion. Thetask is to rea
h a red hemisphere of radius 10 m pla
ed at3Open Dynami
s Engine, a free library for simulating rigid bodydynami
s. For details see http://www.ode.org.
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(a) (b) (
)
(d)Figure 7: The four damages simulated. (a) Redu
ed size of onewheel. (b) Un
ontrollability of one wheel (
) Rotation of the rotationaxis of one wheel (note the dire
tion of the stripes) (d) Obs
urationof part of the a
quired image.a distan
e of 30m. The robot is equipped with an omni-dire
tional 
amera and the value of ∆At is determinedobserving the 
hange in the number of red pixels in theimage. In parti
ular, if the R 
omponent of a pixel is morethan double the maximum of the G and B 
omponents,then the pixel is 
onsidered red.We simulated the robot in �ve di�erent 
onditions, inthe normal 
ondition and with four types of damages (seeFigure 7):1. one wheel size is redu
ed to two thirds of its normalsize2. one wheel be
omes un
ontrollable, i.e. its movementis 
ompletely random3. one wheel rotation axis dire
tion is turned 90 degreesalong the Z axis and be
omes parallel to the longi-tudinal axis, i.e. the rotation of the wheel insteadpushing the robot forward and ba
kward pushes therobot to the left or to the right4. 20% of the 
amera image be
omes obs
uratedIn all the 
ases the algorithm was able to drive therobot to the goal. Fig. 8 reports the distribution of thenumber of time steps required to rea
h the target.In summary, the experiments 
ondu
ted show that thealgorithm reveals to be very robust. It is able to work inhighly dimensional spa
es and 
ope with sensory noise,system nonlinearities, low-pass �ltering e�e
ts and deadtime. Furthermore simulation experiments with a simu-lated mobile robot suggest appli
ability to pra
ti
al prob-lems. In detail the algorithm performed well in drivingthe robot to a goal despite a number of substantial hard-ware damages. 4. Con
lusionsThis paper presents a 
ontrol algorithm inspired by Es-
heri
hia Coli's 
hemotaxis. All relies on the simple as-sumption that if a 
ontrol signal improved the state ofthe system, then applying the same signal for a while

will often give good results. The algorithm requires as
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Figure 8: Distribution of the time steps required to rea
h the target.The time step was set to 5s, and the experiment was repeated 100times for ea
h robot 
ondition.input only a single binary value that indi
ates whetherthe 
onditions improved or not during the previous timestep. This makes the algorithm appli
able to a big 
lassof problems, as long as it is true that repeating 
ommandsthat improved the robot 
onditions have a good probabil-ity to give further improvements in the su

essive steps.We showed that, unexpe
tedly, if the 
ontrol signal ismodi�ed by random perturbations of opportune magni-tude then the performan
es of this simple algorithm 
anbe improved. A two dimensional 
ase is provided as an ex-ample and used to derive an algorithm for the automati
adaptation of the perturbation size. Results of severaltests that suggest the generality and robustness of the al-gorithm were presented. In detail we showed that robustnavigation of a mobile robot toward a goal 
an be easilya
hieved without any parameter tuning.Future works will involve introdu
ing learning in thesystem. In detail, we 
an imagine to use the presented al-gorithm as a way to 
olle
t statisti
s on the relationshipsbetween the sensory information and the performan
e ofdi�erent motor 
ommands. This 
ould in turn be used toextra
t information on the topology of the sensory stateand a
tion spa
e before starting to learn the optimal pol-i
y, i.e. the mapping that gives the 
orre
t a
tion to takegiven a 
ertain per
eived state.Referen
es[1℄ Adler, J. �The sensing of 
hemi
als by ba
teria�. S
ienti�
Ameri
an, vol. 234, 40�47, 1976.[2℄ Dhariwal, A., Sukhatme, G.S. and Requi
ha, A.A.G.�Ba
terium-inspired robots for environmental monitoring�. pp.1436�1443.[3℄ S
heutz, M. and Kramer, J. �Re�e
tion and reasoning me
ha-nisms for failure dete
tion and re
overy in a distributed roboti
ar
hite
ture for 
omplex robots�. pp. 3699�3704. 2007.[4℄ Bongard, J., Zykov, V. and Lipson, H. �Resilient ma
hinesthrough 
ontinuous self-modeling�. S
ien
e, vol. 314(5802),1118�1121, 2006. doi:10.1126/s
ien
e.1133687.


