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Abstract. Touch is a very powerful but not much studied communi-
cation mean in human-robot interaction. Nonetheless many robots are
not equipped with touch sensors, because it is often difficult to place
such sensors over the robot surface or simply because the main task
of the robot does not require them. We propose an approach that al-
lows developing motions for a real humanoid robot by touching its 3D
representation. This simulated counterpart can be equipped with touch
sensors not physically available and allows the user to interact with a
robot moving in slow-play, which is not possible in real world due to the
changes in the dynamics. The developed interface, employing simulated
touch sensors, allows inexperienced users to program robot movements
in an intuitive way without any modification of the robot’s hardware.
Thanks to this tool we can also study how humans employ touch for
communication. We then report how simulation can be used to study
user dependence of touch instructions assuring all the subjects to be in
exactly the same conditions.
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1 Introduction

Observing how dance [1] or sport instructors teach motions, we can note that,
with simple touches, the teacher intuitively conveys plenty of information on
how to modify the trainee’s movement. Touch is particularly appealing as an
intuitive method for humans to interact with robots, and has been employed
to program robot arms [2] [3] and humanoid robots [4]. It then seems plausible
to use touch to develop motions for humanoid robots, and we therefore aim at
studying how touch can be employed for human-robot communication. Many
humanoid robots are available on the market for an affordable cost, but usually
these devices are not equipped with touch sensors. The most straightforward so-
lution would then be to customize the robot by covering it with tactile sensors.
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However several difficulties arise, first of all because the humanoids available
on the market are quite small and the wiring becomes complex. If the sensors
provide an analog output, (multiplexed) A/D converters must be employed and
buses with sufficient bandwidth must be designed. These problems had been
tackled in several works, for instance in [5]. If, as in [6] air actuators are em-
ployed it is possible to read the error between the target position and the actual
position to estimate the force applied by the user. Though air actuators are ideal
for the human-robot interaction because of their compliance, their control is very
difficult (the response is highly non-linear) and are not usually available on off-
the-shelf humanoid robots. One alternative solution would be to use a shadow
robot. This technique, [7], consists in having two identical robots, placed in the
same position. The user interacts with one of the two robots, and comparing
the torques with the ones of the second robot it is possible to distinguish the
force applied by the user from the other forces (gravity, friction forces, etc.).
Though interacting with a physical robot is probably more intuitive, simulating
the touch sensors is a very cost effective solution to allow tactile interaction with
a robot. Furthermore, it is possible to simulate sensors not currently available
with the current technology in terms of size, bandwidth, signal to noise ratio,
etc. Then this technique is general, applicable to any kind of robot. Interacting
with a virtual world also allows to view the robot’s movement in slow play or
stop the motion with no effect on the dynamics, something not feasible in the
real world (for instance, slowing down a jump motion in the real world to better
observe the motion execution is not possible). In the simulated world additional
information can be easily displayed, for example the zero moment point [8]. As a
drawback much information measurable by advanced touch sensors, such as the
intensity and the direction of the applied force, cannot be obtained by virtual
touch sensors which are simulated, for instance, by mouse clicks. We therefore
must assume that the user’s touch direction is normal to the touched surface.
In the case a standard mouse is employed the user cannot either touch multiple
sensors simultaneously, as would be possible employing a real robot. We present
here results obtained using simulation at different levels. First we will show how
it is possible to simulate the touch sensors while employing the real robot to
obtain the motion dynamic (therefore preventing any simulation-reality gap).
In this case simulation is used to provide a sort of “augmented reality” that
enhances the existing robot by providing touch sensors and allows us to study
touch interaction. We then show an application of simulation to analyze user de-
pendence of touch instructions in human-robot interaction. The main advantage
in using simulation when studying user dependency is that simulation allows all
the users to be in exactly the same conditions (same robot, same calibration,
same friction of the floor) and to run the experiment in parallel (multiple PCs
are more easily available than multiple robots). Obviously simulation also allows
a safer interaction, both for the user and the robot. In section 2 we introduce
the idea of extending the robot capabilities by creating virtual models equipped
with sensors not available on the real robot, and present in detail the simula-
tion of touch sensors. In section 3 we describe a possible algorithm to develop
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motions using touch. In section 4 we present an example of how simulation was
employed to conduct tests on user-dependence of touch instructions. In section 5
we present some preliminary experimental results and in section 6 we conclude
summarizing the ideas presented in the paper.

2 Developing Motions With Virtual Sensors

Recently many robots, and in particular small humanoid robots actuated by ser-
vomotors, are becoming available on the market for a lower and lower cost. One
of the main issues when dealing with these robots is the development of robot
movements, which is difficult given the high number of joints (usually around
20). Robot movements are often developed employing slider-based interfaces that
require the user to define the robot motion as a set of keyframes, that is, a set
of instants in time for which the position of each and every joint is provided.

This approach is very time consuming so many alternatives for automatic
motion generation had been proposed in literature [9–14]. Nonetheless hand-
crafted motions are still much diffused [15, 16]. It appears then necessary to
devise intuitive ways to program robot motions by scratch, and we decided to
rely on touch interaction with the robot. Using touch to develop motions has
advantages in terms of intuitiveness for unexperienced users, but obviously for
tasks for which optimization criteria exist specifically devised algorithms can
obtain better performances.

Small humanoid robots available on the market are usually not provided with
touch sensors, but as stated in the introduction, these sensors can be simulated,
and the user can interact with a simulated robot equipped with such sensors. In
detail we can imagine the following development cycle, depicted in figure 1:

Fig. 1. Phases of the motion development.

1. the robot moves in the real world. Its orientation in the world is captured
with a motion capture system and recorded;
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2. users watch the recorded motion evolution in a virtual world.
3. users choose an instant in time where the motion should be modified and

touch the virtual touch sensors to modify the posture at that time.
4. the motion is modified given the user instructions
5. if the obtained motion is not satisfactory, the development cycle is repeated

The trial and error development process of classical slider-based interfaces is
therefore maintained, but instead of requiring the user to set each joint by a
slider with the proposed approach she/he is able to develop the motion just
by touching the robot. Using simulated touch sensors even eases the task with
respect to an interaction in the real world, since the movement can be watched
in slow-play or stopped. In fact we imagine the user to select an instant in time,
stop the execution, touch the robot, eventually choose other instants where the
motion should be edited, change the posture by touching the virtual sensors
and then play the modified motion on the real robot. In the realized system the
virtual sensors can however be touched during motion playback as well.

As previously stated the robot moves in the real world, and we acquire its
position and orientation by a motion capture system. To acquire this information
three markers placed on the robot’s torso revealed to be sufficient. Given the
position and orientation of the robot in the world we are able to reconstruct
the motion evolution afterwards, since knowing the motion and a model of the
servomotors response it is possible to calculate the angle of each joint. If the
servomotors support position reading, accurate joint angle information could also
be recorded during the motion evolution. However approximated joint angles are
sufficient, since their value is only needed to show the user the robot’s posture
in the virtual world.

Once data are collected they can be used to replay the movement in a vir-
tual world. Using data from execution of the motion in the real world frees us
from the necessity of simulating the robot’s dynamic. Very approximate robot
models can be employed, as long as the simplification does not prevent user-
robot interaction. The capabilities of the robot can be extended in the virtual
world, providing it with touch sensors, noiseless gyroscopes, virtual cameras and
so forth. Additional information can also be displayed, for instance in the de-
veloped interface the projection of the (approximated) center of gravity on the
floor and the velocity vector of the center of gravity are displayed4. Fig. 2(b)
depicts a view of the virtual 3D world as rendered by the interface. The robot
links are simplified by parallelepipeds, and each face simulates a touch sensor.

These simulated sensors can be clicked with the mouse, allowing the user to
“push” the robot links by clicking. Since with conventional devices as mice or
touch screens it is not possible to measure the applied force, the output is binary
and the interpretation of the intensity in the developed interface is based on the
pushing time. Another limitation in employing conventional devices is that just
one sensor at time can be clicked. This problem can be solved assuming that

4 These visual hints are introduced to allow expert users to improve the motion per-
formance. They are not essential and thus to realize a model for the presented touch
interaction interface no information on the mass distribution is actually required.
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if the clicks occur when the robot motion is stopped than all clicked parts are
touched together.

To give the user feedback while pushing the robot parts haptic devices could
be employed. While this would probably make the interaction more natural, for
simplicity we chose to provide visual feedback, i.e. the sensors gradually change
color from green to red while being pushed.

(a) (b)

Fig. 2. The robot employed in the experiments and its simplified 3D representation.
The projection of the center of gravity onto the ground (represented by a sphere on the
ground) and its velocity (represented by an arrow) are given as additional information.

3 Interpreting Touch Instructions

Employing touch to develop motions seems straightforward, in particular if we
observe human-human interaction. Nonetheless decoding the meaning of touch
instructions is not trivial. Often no direct mapping from touched part to modified
joint angle is perceived as natural, intuitive by the users. In fact, this one-to-one
mapping would be quite similar to the one used in classic slider-based interfaces.
Furthermore while with existing methods like teaching playback or compliant
joint control the robot moves passively and the user always need to apply forces
to the robot, what happens with humans and what we aim to obtain is to have
the robot gradually interpret touch meaning and understand how to modify its
motion.

One of the issues to be tackled when dealing with touch instructions is the
strong context dependence of the touch meaning. For example if the robot is
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standing, touching the upper part of one leg could mean that the leg should
bend further backwards. However if the robot is squatting, the same touch could
mean that the robot should move lower to the ground by bending its knees (see
Fig. 3).

Fig. 3. Context dependence of the meaning of touch instructions. The user touches the
robot in the same way, but the desired posture modification (bend the leg and bend
the knees, respectively) is different because the robot posture is different.

We can then easily imagine user dependence on the meaning of touch in-
structions, since if no protocol is fixed different users will tend to touch the
robot differently to give the same instructions. Avoiding to force the user to
employ a certain protocol can enhance the intuitiveness of the interface. Sup-
pose a user has a desired posture modification she/he would like to apply (for
instance, raise the leg). If the protocol is fixed the user must identify which
sensors, according to the touch protocol, should be pushed to have the desired
modification. On the other hand if the system is capable of adapting to the user
and estimate his/her intention, it is sufficient for the human operator to touch
the robot spontaneously with no mental effort.

One simple way to have an interface which is able to adapt to the user
is to ask the user to provide examples of the mapping between touches and
corresponding posture modifications and use a supervised learning technique.
The role of the learning algorithm is to realize a mapping between the tuple
(touchinformation, context) and expected intended modification of joint angles.
Currently the context consists of the posture of the robot (represented as the
angle of each of the joints) the orientation (roll, pitch and yaw) of the robot’s
torso, and the velocity of the center of gravity. The posture is needed because the
meaning of touches may depend on the posture, as in the provided example in
which touching the lap means different things depending on whether the robot
is standing or squatting. Likewise, the meaning of the instructions may vary
depending on the orientation, for instance the meaning could be different if the
robot is standing or is lying down. Finally, touch meaning could also depend
on the velocity, especially if the robot is moving fast, for example if it is falling
down.
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Given the limited number of examples compared to the dimensions of the
input space, among the numerous available supervised learning algorithms, like
neural networks or Gaussian Mixture Models, we decided to employ k-Nearest
Neighbor with a specifically devised metric. While this paper focuses on the
simulation aspects the details on the metric and how it was derived are provided
in [17]. Briefly each example provided by the user consists of an input Ii and an
associated intended joint modification vector Mi (that we assume to be the class
to which it belongs). Given an input I∗, the system output vector M∗ can be
obtained by weighting the joint modifications present in the collected examples
Mi, with weights ωi calculated employing the distance (in the high dimensional
space) between the system input I∗ and each example coordinates Ii. Concretely,
indicating with E the number of collected examples

M∗ =

E
∑

i=1

ωiMi (1)

Directly employing k-Nearest Neighbor with Euclidean or Mahalanobis distance
based weights presents two problems. First of all touch information (pushing
time of each of the sensors) should be prioritized over the context. This is to
avoid the output being determined mainly by the context instead of by the
pushed links, as would happen if touch information is given no priority over
the other features of the input (i.e. if the input vector Ii components are all
treated equally). As a trivial example, suppose the human operator designed
an arm motion and therefore only provided examples involving the arm, then
when she/he will push the legs this will cause the arm to move, while in such
cases of no available knowledge it would be intuitive not to apply any posture
modification.

To solve this problem given an input vector I∗ and in particular the touching
information T∗, the output M∗ is calculated considering only the examples having
a set of pressed sensors (i.e., sensor having a pushing duration greater than
zero) the same set of sensors pressed in T∗ or a subset of them. In other words,
indicating with n the number of sensors and with the notation T∗ [s] and Ti [s]
as the pushing duration of the s-th sensor in the system input T∗ and in the i-th
example touch information vector respectively, the i-th example is considered if
and only if

n
∨

s=1

(Ti [s] > 0)) ∧ (T∗ [s] = 0) (2)

is false. In other terms ωi = 0 in equation 1 for the examples in which equation 2
holds.

The second problem arises because every distance function is symmetric.
Suppose to have just one training example, where a sensor was pushed for 300
milliseconds, and this corresponded to a desired modification of increasing a
certain joint angle by 40 degrees. A user might naturally expect that pushing for
less time will cause a smaller change in that joint, while a longer press should
produce a larger joint angle change. Nonetheless the system behavior with a
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distance based weighting is such that any touch on that sensor with duration
different from 300ms, either longer or shorter, results in a smaller angle change.
For example if ωi = 1/ (1 + ‖I∗ − Ii‖) is used as a weighting function pressing the
sensor for 200ms or for 400 ms would give the same modification. To avoid this
unnatural behavior the weight ωi (see Eq. 1) is calculated as ωi = αiβi. Given T∗,
the touch information components of the input vector, and the various example
touch information vectors Ti, αi is calculated as

αi =
∏

s:Ti[s]>0

T∗ [s] /Ti [s]

This value keeps increasing linearly as the pushing time increases. The second
factor βi accounts for all information not used in the calculations of αi

– the sensor information T∗ [s] and Ti [s] for the sensors s such that Ti [s] = 0;
– the joint angles of the robot in the system input (P∗) and the angles recorded

in the i-th example Pi;
– the orientation present in the system input O∗ and the one of the i-th ex-

ample Oi;
– the center of gravity velocity vectors V∗ and Vi, relative to the system input

and to the i-th example respectively.

It was chosen to calculate each βi as

βi =
1

1 + di

(3)

where di provides a measure of the diversity of the current input I∗ and the i-th
example input Ii. Denoting the Euclidean norm by ”‖‖”, di is given by

di =

√

∑

s:Ti[s]=0

(T ∗[s] − 0)2 + ‖P − pi‖
2
+ ‖O − oi‖

2
+ ‖V − vi‖

2

where each vector component is normalized scaling by its variance in the
example data set since the units are heterogeneous.

The structure of Eq. 3 emerges from practical experiments: several decreasing
functions were tested and the one which appeared to give the most intuitive
behavior, f(x) = 1/(1 + x) was chosen. A deeper and more formal analysis will
be conducted in future works.

It must then be decided how to acquire the examples of the mapping used
by the algorithm. We chose to collect them on-line, during the development of
robot motions. This brings two advantages. First of all no special session where
the user is required to provide how she/he would touch the robot to express
certain pre-defined modifications is required. Secondly the human operator can
identify when the system fails to predict her/his intention, and can provide,
by the shared protocol, the intended joint modification, so that the mapping
between touch instructions and estimated modification intentions can be refined
where it needs to be. Ideally the system keeps improving its knowledge base
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during the motion development and users need to teach the meaning of the
touch instructions less and less frequently.

It is therefore required to provide a method for the user to communicate the
desired posture modification when the system does not estimate the intention
correctly. In the current implementation a classical slider based interface was
used.

4 Assuring Identical Conditions

As previously stated we can suppose user dependence of the meaning of touch
instructions. In detail the same intended posture modification could be expressed
in with different touch instructions and the same touch could have different
meanings for different users even within the same context. In order to compare
the instruction provided by different users we should put all of them in exactly
the same conditions, otherwise differences in the results could derive by those
factors. In detail we would need the users to employ identical robots, assure
the same servomotor calibration, the same motion capture calibration, the same
friction of the ground surface and so forth. These differences can be overcome
using a simulator. In this case, the behavior of the robot is identical for any
execution and every user. If identical PCs are used the experiment can also be
run in parallel with different users assuring them to be in exactly the same
condition. Even if a simulator is used to replace the real robot, the development
cycle described in section 2 does not need to be altered. In detail, the users keep
developing the motion using exactly the same interface employed for the control
of the real robot and the simulator can provide a virtual motion capture system
that sends the information to the interface simulating an ideal motion capture
system that return the exact position of virtual markers.

5 Experiments

Experiments had been conducted using Vision4G, a humanoid robot produced
by Vstone5. This robot is 445mm high and has 22 degrees of freedom actuated
by DC servomotors (Fig. 2(a)). For capturing the robot’s position we used the
Eagle Digital System developed by Motion Analysis Corp. The robot’s 3D rep-
resentation, used to provide the robot with virtual touch sensors, is presented
in figure 2(b). Strong simplifications had been introduced, for instance parallel
links, present in the robot legs, had been modeled by a single link actuated by
two motors that rotate synchronously. For the reconstruction of the motion the
response of the servomotors had been approximated by a simple delay of 200 ms.
We’d like to recall that the interface does not provide any dynamics simulation,
and the position and orientation of the robot for each time instant is calculated
interpolating the motion capture system data.

5 http://www.vstone.co.jp/
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As a first validation of the feasibility of the developed interface, a stand up
motion, a jump motion6 and a walking motion were successfully realized. In de-
tail the jump motion was realized both with the touching approach and with a
classical slider-based interface for comparison. Similar motions were obtained,
respectively, in 17 minutes and in over 40 minutes. Though this is just a prelimi-
nary results this can provide support to the thesis that motion development time
can be reduced introducing touch-based interface. The examples of the mapping
between touch instructions and posture modification provided by the user were
studied. Analysis of the collected data is presented in [17].

User dependence was investigated asking six subjects to develop the same
motions (a walking and a kicking motion) using the interface connected to a
simulator. All the subjects are all Italian male computer science students, and
their age is in the range 23-27 (mean 24.5, standard deviation 1.87). The simula-
tor was developed using ODE, an open source library designed to simulate rigid
body dynamics7. Figure 5 shows a screenshot of the rendering provided by the
simulator. The robot had been modeled by 31 rigid bodies, each of which con-
sists of one or more parallelepipeds(totally 39) linked by 34 joints.The number
of joints is higher than the number of DOFs for the presence of parallel links,
which in this case has been modeled directly as free hinge joints. The inertia
matrix of each rigid body was calculated using the following approximations:

– each parallelepiped has uniform density and weights 35g;

– the real position and weight (63g) of the servomotors was identified and the
density inside each servomotor was assumed constant;

– the robot’s weight not accounted in the previous terms was assumed to be
located in the robot’s torso, uniformly distributed.

The main finding is that different users gave different abstraction levels in pro-
viding touch instructions:

– a nearly fixed mapping from a small set of sensors to the joints; the context
has little or no influence

– a mapping based on physical considerations (the joints are imagined to be
“elastic”); in this case, the context, for instance the position of the ground,
becomes crucial

– a very high level representation of the motion, where for instance just the
limb that should be moved is indicated by touching; at this level of abstrac-
tion a single touch corresponds to a motion primitive.

As previously stated since a simulator was employed the differences in the mean-
ing of touch instruction is guaranteed to be due to the user-dependence of the
mapping, and not by different environmental conditions during the tests.

6 To ease the task a rubber-band pulling the robot from the top was employed. Details
and pictures are reported in [17].

7 See http://www.ode.org/ for more information on this library.
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Fig. 4. Screenshot of the rendering provided by the simulator.

6 Discussion and Future Works

Touch is a very intuitive mean of communication, and can be used in human-
robot interaction for teaching motions, first of all for tasks like dance or sport
movements for which it is difficult to provide a mathematical definition of the
performance and for which, therefore, a user evaluation and tuning is very impor-
tant. However most of the available robots are not provided with touch sensors.
One cost effective solution, presented in this paper, consists in interacting with
a 3D representation of the robot which extends the robot capabilities simulating
sensors not present on the real one. We then presented an application of simula-
tion on studying user dependence of touch instructions. In this case simulating
the robot allows us to study the differences in the teaching method of differ-
ent users when they interact in exactly the same conditions with a (simulated)
humanoid robot.

Future works will aim at making the interaction more direct and natural.
For instance, we can imagine to employ more advanced virtual reality devices.
Another limitation of the current approach is that touch instructions are inter-
preted just observing the physical context, while we can imagine that knowledge
of the task could be exploited to improve the meaning estimation.

Finally while in this work the user defines the target of the robot’s motion
and the performance of the result is evaluated by the user’s subjective criterion,
to allow a better comparison with other works definition of a set of measurement
other than the development time here employed should be considered.
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