A parameterless biologically inspired control
algorithm robust to nonlinearities, dead-times
and low-pass filtering effects

Fabio DallaLibera':4, Shuhei Ikemoto?, Takashi Minato?*, Hiroshi Ishiguro®+*,
Emanuele Menegatti', and Enrico Pagello!

! Dep. of Information Engineering (DEI), Faculty of Engineering,
Padua University,
1-35131, Padua, Italy
2 Dep. of Multimedia Engineering,
Graduate School of Information Science and Technology,
Osaka University,
565-0871, Suita, Osaka, Japan
3 Dep. of Systems Innovation,
Graduate School of Engineering Science,
Osaka University,
560-8531, Toyonaka, Osaka, Japan
4 ERATO, Japan Science and Technology Agency,
Osaka University
565-0871, Suita, Osaka, Japan

Abstract. A biologically inspired control algorithm for robot control
was introduced in a previous work. The algorithm is robust to noisy sen-
sor information and hardware failures. In this paper a new version of
the algorithm is presented. The new version is able to cope with highly
non-linear systems and presents an improved robustness to low-pass fil-
ter effects and dead-times. Automatic tuning of the parameters is also
introduced, providing a completely parameterless algorithm.

1 Introduction

Biologically inspired algorithms have been intensively studied in the robotics
field. In particular, we focused on robotic control problems and in [4] we pre-
sented a simple biologically inspired control that is robust to environmental
changes and noise. The algorithm takes inspiration from bacteria chemotazis,
the process by which bacteria [1, 10, 8] sense chemical gradients and move with
directional preference toward food sources.

Among the most thoroughly studied organisms with regards to chemotaxis
we can certainly cite Escherichia Coli (E. Coli).

This bacterium has only two ways of moving, rotating clockwise or counter-
clockwise [1]. When it rotates counter-clockwise the rotation aligns its flagella
into a single rotating bundle and it swims in a straight line. Conversely clockwise
rotations break the flagella bundle apart and the bacterium tumbles in place.

The bacterium keeps alternating clockwise and counterclockwise rotations. In
absence of chemical gradients, the length of the straight line paths, i.e. the
counter-clockwise rotations, is independent of the direction. Thus, the movement
consists in a random walk. In case of a positive gradient of attractants, like
food, E. Coli instead reduces the tumbling frequency. In other terms, when the
concentration of nutrients increases the bacterium proceeds in the same direction
for a longer time. This strategy allows biasing the overall movement toward
increasing concentrations of the attractant. Such a simple mechanism works
despite the difficulties in precisely sensing the gradient. Actually, the spatial
gradients in concentration cannot be sensed directly due to the small dimensions
of the bacteria, so temporal difference in the concentration is used to estimate
the nutrient distribution.

A wide spectrum of models, from a very abstract point of view to the mod-
eling of the protein interactions are available in literature [9,2,7].

The movement of E. Coli was mimicked in robotics as well. In [5] it was shown
that while gradient descent is faster for tracking a single source, biased random
walks perform better in the presence of multiple and dissipative sources and
noisy sensors and actuators. Furthermore the stochastic nature of the algorithm
prevents it from getting stuck in local minima.

However, the robustness to hardware damages and noisy sensory information
achievable by biased random walk were not fully exploited. Expressly, in [5] the
hardware already provides two basic movements, proceed straight and change
direction randomly, and the biased random walk is performed at the behavior
level. This approach limits the robustness for unexpected hardware failures. In
fact, if due to a hardware failure, the behavior corresponding to such commands
will be different from the expected one, the task will not be accomplished. Imag-
ine for instance to have a mobile robot with two wheels powered by independent
motors and that due to an encoder problem one of the motors starts to rotate
in the opposite direction. In this case when the “go forward” motor command is
provided the robot spins around itself and the target will never be reached. With
our approach [4], instead, a biased random walk is executed directly in the motor
command space, i.e. the behaviors themselves are determined online through the
random walk. This gives great robustness in case of hardware failures since new
behaviors that exploit the current hardware behavior are found online by biased
random walk. For instance, in case of the encoder failure described, the robot
would explore new motor commands, until it finds that rotating the motors in
opposite directions the distance from the target can be decreased.

Concretely in [4] the control of the robot reduces to the single equation

U
U1 = Uug + asgn (AA) m + One (1)
t
where u; € R™ is the motor command control signal provided at time ¢.
The equation is composed of two terms, a bias term b; = sgn (AA;) m and a
purposely added random perturbation 7, € R™, multiplied respectively by two
scalar coefficients o and 3.

The quantity AA; € R appearing in the bias term expresses the variation of
the “quality” of the robot state during the ¢-th time step. For instance, in [4]
the task consists in reaching a red target, and the quantity AA; represents the
variation in the number of red pixels acquired by the camera image. Therefore,
essentially, the bias term states that if the robot got closer to the target using
command u; then command u;4; should be similar. The second term is the most
interesting part. In [4] it was shown that by adding random perturbations of op-
portune magnitude to the control input, it is possible improve the performances.

Figure 1 reports an example. Let us suppose to have a holonomic robot
initially placed at [10,10]7 (arbitrary units) that has to reach a target placed
at [0,0]7, and the motor command to be simply the translations along the two
axes. If the perturbation is too small, then the effect of the bias will be strong,
and even nearly tangential movements that bring the robot slightly closer to the
goal will be used for a long time. If the perturbation is too big then the robot
changes direction too frequently, even when the movement is headed straight
to the goal. If the perturbation amplitude is appropriate than the robot will
reach the goal with a good trajectory °. This result is confirmed observing the
distribution of the robot heading direction compared to the optimal direction in
Fig. 2. When the perturbation is too little essentially all headings that do not
face backwards are chosen with uniform distribution. When the noise is too big,
the robot tries all directions, with a small bias on the good ones. Finally, when
the perturbation level is appropriate the distribution has a peak in the optimal
heading.

In [4] the robustness of the algorithm was highlighted by experiments both
with a simulated and a real robot. In particular it was shown that the algorithm is
able to drive to the target a simulated robot that undergoes substantial damages.
Secondly real world experiments proved that even very noisy information can
be used to accomplish the task. Results showed that the performance depends
essentially just on the ratio between the two coefficient o and 3, and not on
their values itself. However, the optimal ratio depends on the hardware and
environment conditions. The next section will highlight three shortcomings of
the previous algorithm, and section 3 will present a new algorithm that faces
these aspects. Furthermore a criterion to automatically adjust the perturbation
level is introduced. Successively section 4 provides a quantitative comparison of
the two versions of the algorithms, and finally section 5 concludes summarizing
the paper and presenting future works.

2 Generality limitations of the previous version

In most systems opposite motor commands generate an opposite effects, at least
in some regions of the motor command space, and that a scaled version of the
motor command provides a similar effect with different intensity. Observing care-
fully Eq.1 it is possible to observe that the algorithm previous presented partially

® A stochastic resonance effect can be observed. For details see [3, 6, 12].

distance traveled toward the target

Low
perturbation
iarget magnitude

High
perturbation
magnitude

Approptiate
perturbation
magnitude

Fig. 1. Performance for different perturbation magnitudes. The top panel reports the
performances for different values of § when o = 1072, The performance is measured as
the average distance traveled toward the goal in 1000 time steps, calculated over 10000
simulations. The bottom panels report examples of trajectories obtained for different
values of (3. Precisely, the first trajectory was obtained for a low perturbation level,
B = 0.07, the second trajectory corresponds to an opportune level of perturbation,
B = 0.66 and finally the bottom right panel reports a trajectory generated with 3 = 6.6.

exploits this fact. In fact it assumes that if command u; is beneficial for the robot
state at time ¢, then m will probably be a good bias for the following com-
mand u41. Furthermore, if u; worsened the conditions during time ¢ then it is
assumed that fm will be an appropriate bias for u;1. These considerations
however do not hold for many motor command spaces. Using the previous ex-
ample, suppose again to have a holonomic robot whose coordinates are z; € R2.
Assume now u; € mathbbR? and its two components to represent the velocity in
cos(u?)

sin(u?)
origin introduced by the cosine prevents the algorithm from being able to drive
the robot to the goal.

po]ar coordinates, i.e. Tip1l = ¢ + "U’H . |: :| The non-linearity near the

Another disadvantage of using —u; as bias when the conditions worsen is that
the control algorithm performs badly if there are dead times in the response.
Imagine for simplicity a unidimensional case where the goal is at +10 and the
position z;, initially 0, changes by xy = x;—1 + u¢—2, ¢, ur € R. In this case the
performance increases when the bias is positive. Suppose to start with ug and
u1 negative, and suppose the random perturbations to be small enough that the
sign of the motor command u; is determined by the sign of the bias b;. Since

0.06 -

o

>

I
T

Probability Density Function
o
=Y
f
T

o

5

3
T

0.02F

0 L I I I L L
-180 -150 -120 -90

i H H
60 30 0 30 60 9 120 150 180
deviation from optimal heading [deg]

Fig. 2. Distribution of the robot heading, compared to the optimal heading, for differ-
ent perturbation levels. The blue continuous graph reports the distribution for a low
perturbation magnitude, the green dashed graph represents the probability density
function obtained for an opportune perturbation coefficient (8 = 0.66) and the third,
red dotted curve, shows the distribution of the heading for an high perturbation level

(B =20).

ug is negative AA, will be negative, and the bias by and signal us will become
positive. However, in the next step the effect of u; will lead to a negative AAs,
which in turn will bring the bias b3 and us to become negative again. The effect
of us will provide a positive AAy, so the bias by will have the same sign of us,
i.e. it will be negative. At this point the evolution of the bias will repeat, in a
loop that contains two negative biases and a positive one. If the magnitude of
the biases is similar for the positive and negative case, in general the bias will
tend to bring the robot farther from the target instead of bringing it closer, and
the system will never reach the target +10. Table 1 reports other examples of
bias sequences that reveal to be a nuisance instead of being beneficial to reach
the target.

Table 1. Bias sequences leading to performance decrease

uo | U1 Sequence

AAL-, -, +, ...
Ut +, =y Ty e
AAL-, 4+, -, ...
ut |-y -, +7 .
AAL+, - -, ...
ut |-, +7 =y e

For similar reasons the bias can become deleterious if the system includes
delays introduced by low pass filters. This can be a serious disadvantage of the

algorithm, since many physical systems present this kind of behavior. A simple
example can be provided by introducing an Infinite Impulse Response filter in the
example of a holonomic robot moving on the plane. Concretely, assume the robot
to change its position by x;41 = @ + v where vy = (1 —107°) - vp—1 + 1077 - wy.
Let us define a “bad bias” a bias that has a heading that differs more than 90
degrees from the optimal one and would therefore bring the robot further from
the goal. Figure 3 reports how the probability of bad biases changes by varying
the random perturbation level (8/a ratio) and the delay level (p). Although the
probability of bad biases can be minimized by changing the random perturbation
level, it can be observed that as the delay increases the probability increases.
For instance, for a value of p equal to 3 the probability of bad biases cannot be
lower than 0.09.

noise level (log, , (B /))

15
delay (p)

Fig. 3. Probability of biases that would bring the robot further from the goal. The X
axis represents the delay level (p), the Y axis represents the perturbation level (3/«)
and the color indicates the probability of bad biases (lighter color indicates a higher
probability). The yellow line indicates the noise level that gives the lowest bad bias for
each delay level.

It is worth noting that for a wide range of problems it is often possible to
find expedients that allow to mitigate the weak points presented in this section
and that allow to use the previous version of the algorithm. In fact, adopting
an adequate motor command space reveals to be sufficient in most of the cases.
However, this paper aims at showing that the generality of the algorithm can be
greatly improved without increasing the algorithm complexity.

3 A new version of the algorithm

As reported in the introduction, Escherichia Coli proceeds by movements in ran-
dom directions, but when moving toward increasing concentrations of nutrients
the movement in that direction is prolonged. A similar behavior can be obtained
by taking us41 = uy if AA; > 0 and selecting ;41 randomly® if AA4; < 0. As in

5 In the following we assume to select u; € R™ using a uniform distribution over
the whole motor command space, but the results remain essentially the same using
different distributions.

the previous version of the algorithm, a random perturbation can improve the
performances. In particular, it is sufficient to add a perturbation to each of the
components of the input when A4, > 0, i.e. uj; = uj + 'R, R ~ N(0,1) for
each of the components of the input (1 <i <m).

Choosing the bias at random when the system is getting further from the
goal removes any assumption of linearity of the system. Clearly this leads to
a performance decrease for systems that are effectively linear, but considerably
improves the generality of the algorithm. Furthermore, in case of dead times
periodic bias sequences with negative effects are unlikely generated. For instance,
in the case of the unidimensional example provided in the previous section, if
by chance a positive bias is followed by another positive bias then the system
will keep a positive bias and reach the target”. Similarly, better performances
are expected when delays arising from low pass filter effects are present. Imagine
in fact to have a sequence of good motor commands that are not recognized as
such because their effect comes later. In the meanwhile new commands will be
generated. If the system responds with an opposite behavior when the input is
negated (as for all linear systems and many other setups) then choosing a random
command is less deleterious than choosing the negated motor command.

Intuitively, the algorithm operates in a very simple way. It keeps using the
same motor command as long as the command is beneficial, otherwise it picks
up a new one at random. This provides intuition of how to adjust the magni-
tude of the random perturbations. Expressly, if the random perturbations are
appropriate and in general good inputs are selected these will be used for a long
time. Observing the variance of the produced motor commands we can there-
fore have an idea of the quality of the motor command. In order to dynamically
adapt 7} we can therefore estimate the variance of u! by picking some sam-
ples, slightly increase(/decrease) 7!, and estimate the variance of u! again. If
the variance decreased then we increase(/decrease) 7t once more, otherwise we
decrease (/increase) it. This kind of effect can be showed by a simple example.
Suppose as previously done to have a holonomic robot that must approach a tar-
get located in [0,0]7. To reduce the problem to a system with a unidimensional
motor command, assume the robot to move by steps of fixed length s, along
the angle indicated by u;. Formally let 2 € R? be the robot position, u; € R,
cos(uy)
sin(uy)
average decrease in the distance to the goal for a single step over N steps, i.e.

)= llzoll—llenl
N-s .

Fig. 4 reports the average performance 1 and variance of u; for different val-
ues of 7. We notice that the maximum performance corresponds to the minimum
variance. For more complex setups the two peaks could not coincide, but choos-
ing the perturbation that gives the lowest motor command variance appears to
be a reasonable choice in most cases.

Tip1l = Ty + S - [] Assume then to express the performance v as the

7 As previously stated, assuming the perturbations to be small enough. Notice, how-
ever, that a sequence of two positive biases is sufficient for recovery if perturbations
change the sign.

performance y
— . variance u,

0.45

1 (perturbation)

Fig. 4. Average performance and input variance obtained for different values of 1. The
graphs were obtained placing the robot in z¢ = [10, 10]T with s = 1079, simulating
N = 10° steps and repeating the test 10° times.

Assuming to estimate the variance using just two samples® we derive the
following algorithm

wi ul +ni if AA; >0
t+l random selection otherwise
So=11
ol — (Uf: - Ui—1)2
t 2
. J1/68 if todd Aof > of_y
Sl 5 otherwise
i misi if todd
Ni41 =

n; otherwise

4 Experiments

As a first step we compared the performances of the two algorithms when coping
with nonlinear systems. In this experiment, the movement of the robot was set

8 A higher number of samples provides a better estimate of the variance and therefore
of the variance change, but slows down the adaptation. Note that, however, two
samples are always sufficient to guarantee a right estimation of the whether the
variance increased or not with a probability higher then 0.5.

18000
I previous algorithm
[new algorithm

16000 q

14000 - b

12000 - 1

10000 - q

particles

8000 - q

6000 - q

4000 -

2000

n
-20 -15 -10 0 5 10

traveled distance

Fig. 5. Distribution of the distance toward the goal traveled in N = 10* steps of
size s = 10% using the nonlinear functions f’(z). The robot was placed in 6 different
positions and for each position the test was repeated 10* times.

. . . . in(2 NT O gin(2 i
to a4y = o} + s fi(ur) where f(z) = Larctan (({ERETEERZIREIE).

In this expression the sin function is applied element-wise and Q*, P? € R?*2
and &%, (" € R? were randomly initialized. Figure 5 shows the distance traveled
toward the goal in different trials. In detail the robot was placed in 6 different
initial positions (10 - [sin (2k7/6) cos (2kn/6)]T, k € N',0 < k < 5) and for each
position the experiment was repeated 10* times. We notice that as expected
the performance is generally higher for the newer version of the algorithm. The
newer version of the algorithm is able to drive the robot to the goal even in case
of the highly nonlinear mapping introduced in the experiment.

The second test deals with dead times in the system. Expressly, we simulated
the case w441 = x4 + up_g, d € N, z4,u; € R?, —s < 2t < s for N = 10*
time steps. As visible in Fig. 6, with the previous version of the algorithm the
distance traveled toward the goal drops off as soon as there is a dead time d.
The performance of the new version of the algorithm degrades as the dead time
d increases, but does not reach 0, i.e. the algorithm is still able to drive the robot
to the goal whatever the dead time is.

We then tested the algorithms on a system that includes a low pass filter as
the one described in the previous section, i.e. we assumed the movement to be
given by x;41 = 2 +v; where vy = (1-107°)-v;_1+107?-u,. Figure 7 reports the
distance traveled toward the goal for different values of the filtering effect p. We
can observe that in the previous version of the algorithm the distance traveled
toward the goal decreases as p increases and becomes nearly 0 for a value of
p = 3. The newer version has better performance for all the p settings, and
interestingly the performance increases for p > 2.4. This is due to a smoothing
effect introduced by the low pass filter that makes the trajectories more straightly
headed to the goal.

10

traveled distance

8
L od.05 ||
N= ~ -~ old mean
€ old 95 ||
r ~ — —new .05
o . new mean| |
1 . - -

L I I
20 140 160 180 200

8 100 1
d (dead time) [time steps]

Fig. 6. Average movement toward the goal for different dead time values. The plot
reports the average distances traveled using the two algorithms, as well as the 0.05 and
0.95 quantiles, i.e. the distances traveled toward the goal are reported with their 90%
confidence interval. The graphs were obtained setting the maximum velocity s = 1073,
placing the robot at zo = [100, 100]”, simulating the movement for N = 10* steps and
repeating the experiment 10* times.

0ld 05
— — oldmean ||
old 95

travel distance

low pass effect (p)

Fig. 7. Average movement toward the goal for different values of the low pass filter
entity p. The plot reports the average distances traveled using the two algorithms, as
well as the quantile function for 0.05 and 0.95, i.e. the distances traveled toward the
goal are reported with their 90% confidence interval. The graphs were obtained setting
the maximum velocity s = 1072, placing the robot at o = [100,100]”, simulating the
movement for N = 10* steps and repeating the experiment 10* times.

Using ODE?, we finally compared the two algorithms with a simulated a
mobile robot. The robot is equipped with three spherical wheels having diameter
of 15 cm. The two front wheels are directly actuated by two independent motors
whose maximum velocity is 0.5 rad/s while the rear wheel is free to rotate in
any direction. The task is to reach a red hemisphere of radius 10 m placed at a
distance of 30m. Sensory information comes from a simulated omni-directional
camera and the value of AA; is determined observing the change in the number of
red pixels in the image. In particular, if the R component of a pixel is more than

double the maximum of the G and B components, then the pixel is considered
red.

 Open Dynamics Engine, a free library for simulating rigid body dynamics. For details
see http://www.ode.org.

11

The robot was simulated in five different conditions, in the normal condition
and with four types of damages, as done in [4]:

1. one wheel size is reduced to two thirds of its normal size

2. one wheel becomes uncontrollable, i.e. its movement is completely random

3. one wheel rotation axis direction is turned 90 degrees along the Z axis and
becomes parallel to the longitudinal axis, i.e. the rotation of the wheel instead
pushing the robot forward and backward pushes the robot sidewards

4. 20% of the camera image becomes obscurated

As a result, the newer algorithm provides faster reaching times that the pre-
vious version (with a/f set as to maximize the performances) in most of the
cases. Better performances are obtained by the previous version in the uncon-
trollable tyre case, because with that setup automatically setting the noise level
becomes difficult. For further information see http://robotics.dei.unipd.
it/~fabiodl/papers/material/simpar10/.

5 Conclusions and Future works

In this paper, we presented a simple and very general control algorithm than
can be applied to a wide variety of robots without any knowledge on the hard-
ware structure. The robustness of the algorithm was tested by the simulation
of extremely nonlinear system and systems that include large delays. We notice
that the main focus here was in proposing a very general and simple control al-
gorithm, and that for specific problems, certainly there are more dedicated and
better performing algorithms. In particular the algorithm does not store any
information about the world except whether the robot conditions improved or
not over the previous time step. This can reveal advantageous when the world
conditions changes so often that storing information would be unworthy or when
sensory information, computation capabilities and the memory available are very
limited. In fact, we must not forget that this algorithm is inspired from the move-
ment of very primitive organisms like bacteria. If modeling the world dynamics
is expected to be beneficial and richer sensory information and resources are
available then it would be possible to include reinforcement learning to improve
the performances of the presented algorithm. In detail, a straightforward ap-
proach would be to use the behavioral rule presented in this paper as the Actor
of the classical Actor-Critic architecture [11]. In this setup the TD error pro-
vided by the critic would constitute the AA; of our algorithm. Furthermore the
actor could use the signals from the critic to modify its policy by altering the
probability used to choose a new action when AA; is negative. Expressly, the
probability for a new action would be a function of the state, and learning would
try to maximize the probability of choosing optimal actions for each state. Us-
ing our algorithm as an actor would likely provide the system with an efficient
bootstrap, and would balance in a simple way exploitation and exploration.
Another very interesting point that will be analyzed more deeply in future
works is the mechanism underlying the performance improvement due to the in-
troduction of random perturbations of opportune magnitude. The performance

12

visible in log scale in Fig. 1 and in linear scale in Fig. 4 clearly resembles the
Signal to Noise Ratio curves arising in presence of stochastic resonance. Briefly,
stochastic resonance is a phenomenon for which adding noise improves the sen-
sitivity of sensors in nonlinear sensing systems. In recent years, many biological
researches have focused on stochastic resonance to explain the high robustness
and sensitivity of sensory organs of living beings. Analyzing how a stochastic
resonance effect emerges in a very simple algorithm like the one presented here
will surely be interesting from an engineering point of view. Furthermore, while
most of the biological researches on stochastic resonance focus on the sensing
mechanisms of creatures and how they exploit stochastic resonance, our results
focus on an improvement of the performances of a control algorithm. As a final
result, we hope that clarifying the mechanism underlying the algorithm could
help understanding the control mechanism of living creatures.

References

1. Adler, J.: The sensing of chemicals by bacteria. Scientific American 234, 40-47
(1976)

2. Baker, M.D., Wolanin, P.M., Stock, J.B.: Systems biology of bacterial chemotaxis.
Current Opinion in Microbiology 9(2), 187 — 192 (2006), cell Regulation / Edited
by Werner Goebel and Stephen Lory

3. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. Journal
of Physics A: mathematical and general 14, 453457 (1981)

4. DallaLibera, F., Ikemoto, S., Minato, T., Ishiguro, H., Menegatti, E., Pagello, E.:
Biologically inspired mobile robot control robust to hardware failures and sensor
noise. In: Robocup 2010. Singapore (2010)

5. Dhariwal, A., Sukhatme, G.S., Requicha, A.A.G.: Bacterium-inspired robots for
environmental monitoring. In: 2004 IEEE International Conference on Robotics
and Automation (ICRA 2004). pp. 1436-1443. New Orleans, USA (2004)

6. Gammaitoni, L., Hanggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Re-
views of Modern Physics 70(1), 223-287 (1998)

7. Jiang, L., Ouyang, Q., Tu, Y.: Quantitative modeling of escherichia coli chemo-
tactic motion in environments varying in space and time. PLoS Comput Biol 6(4),
€1000735 (04 2010)

8. Rao, C.V., Kirby, J.R., Arkin, A.P.: Design and diversity in bacterial chemotaxis:
A comparative study in escherichia coli and bacillus subtilis. PLoS Biol 2(2), e49
(02 2004)

9. Schnitzer, M.J.: Theory of continuum random walks and application to chemotaxis.
Phys. Rev. E 48(4), 2553-2568 (Oct 1993)

10. Segall, J.E.; Block, S.M., Berg, H.C.: Temporal comparisons in bacterial chemo-
taxis. Proceedings of the National Academy of Sciences of the United States of
America 83(23), 8987-8991 (1986)

11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). The MIT Press (March 1998)

12. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice
ages to crayfish and SQUIDs. Nature 373(6509), 33-36 (1995)

