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Abstract

Stochastic resonance (SR) is a counterintuitive phenomenon, observed in a
wide variety of nonlinear systems, for which the addition of noise of opportune
magnitude can improve signal detection. Tuning the noise for maximizing the
SR effect is important both for artificial and biological systems. In the case
of artificial systems, full exploitation of the SR effect opens the possibility
of measuring otherwise unmeasurable signals. In biology, identification of
possible SR maximization mechanisms is of great interest for explaining the
low-energy high-sensitivity perception capabilities often observed in animals.
SR maximization approaches presented in literature use knowledge on the
input signal (or stimulus, in the case of living beings), and maximize the
mutual information between the input and the output signal. The input
signal, however, is unknown in many practical settings. To cope with this
problem, this paper introduces an approximation of the input-output mutual
information based on the spurious correlation among a set of redundant units.
A proof of the approximation, as well as numerical examples of its application
are given.
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1. Introduction

Stochastic resonance [1] is a counterintentuitive phenomenon, initially
proposed in physics for explaining the recurrence of ice ages [2], for which
noise takes an important role in enhancing, instead of degrading, the informa-
tion transmission in nonlinear systems. This phenomenon has been observed
in a variety of natural systems [3, 4] and was exploited in a wide range of
artificial systems [5, 6, 7, 8, 9, 10, 11].

Among the possible ways of measuring the stochastic resonance effect,
mutual information has been proposed as a very theoretically sound ap-
proach [12]. In literature, the computation of the mutual information be-
tween the conditioning input and the conditioned outputs is often performed
assuming the knowledge of the input itself [13, 14] or of its Fisher infor-
mation [15, 16, 17, 18]. In particular, the computation of the input-output
mutual information based on input’s Fisher information is an approximation
valid in a particular setting, the case in which a single input signal conditions
a high number of (redundant) outputs. This setting takes a very important
role in engineering applications [8, 7, 10, 19], where a single unknown signal
is often measured by multiple sensing elements. The same setting assumes
great importance in biology as well [16, 20], because information is often
coded and transmitted using populations of neurons [21, 22, 23]. In fact,
it was shown that information transmission through multiple low capacity
pathways turns out to be more efficient, in terms of metabolic cost, than
a single high bit-rate communication channel. The setup of a single input
conditioning multiple output is often taken as a first approximation of the
real network, that includes coupling between the outputs as well. In this
paper we focus on this setup of a single input conditioning multiple outputs,
and introduce a new approximation of the input-output mutual information
based only on the spurious correlation between a high number of redundant
outputs.

The earliest discussion on spurious correlation can be found in [24, 25].
Here, Pearson introduced the term to indicate the correlation that arises in
the ratios X/Y and Z/Y even when X, Y, Z are independent random vari-
ables. From this, he concludes that correlation between ratios in bone lengths
does not constitute a good indication of correct grouping of bones. Later,
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Yule recognized that the problem does not lie in taking ratios, but that the
validity of computing correlations on ratios actually depends on what the
variable is expected to influence. In fact, in some cases, it may be possible to
expect influence on the absolute magnitudes. In other cases, an effect on the
ratios could appear more reasonable. Finally, in some settings the mode of
operating of the causes may be totally unknown [26]. In his following works,
Yule elaborates on the problem of inferring direct causal relations from as-
sociations when no causal relation actually exists. In particular, the specific
case of inferring that A causes B when actually A and B are both caused by
C, the setup used in this paper, is discussed in his text [27] under the name of
“illusory associations”. We can find an analysis of the same case, under the
currently used name of “spurious correlation”, in [28], where Simon clarifies
the logical processes and assumptions that are involved in testing whether a
correlation is spurious or not. To the best of our knowledge, however, not
much research was conducted in studying what kind of information the statis-
tical dependence between several variables influenced by a common variable
(or set of variables) can provide on the relationship between the influencing
variable(s) and the influenced variables. Nonetheless, it is clear that a link
between the two quantities could be exploited in many cases, among which
we find the stochastic resonance tuning.

To study this aspect, in this paper we leverage on the concept of total
correlation. This quantity was first introduced by McGill in [29]. This work
extends Shannon’s concept of transmitted information to the case of multiple
sources, providing a mathematical model of psychological experiments in
which several stimuli influence the measured quantity. Later, the concept
of total correlation, also called multiinformation or multivariate constraint,
was focused more in detail by several researchers, including Watanabe [30],
Garner [31] and Han [32]. In particular, Han gives a full characterization
of all the nonnegative symmetric information-theoretic correlation measures,
of which total correlation is one instance. This characterization provides a
more concrete idea of the measure by showing how total correlation can be
decomposed into level-specific measures of dependence among variables. This
concept was recently highlighted again by Studeny in [33], where the links
between total correlation and conditional mutual information are focused.
For the comprehension of the following of the paper, it may suffice to consider
total correlation as one of the extensions of mutual information to multiple
variables, which measures the deviation of set of variables from independence.
More concretely, the total correlation of a set of variables Y1, . . . , Yn can be
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calculated as the Kullback-Leibler divergence between their joint probability
p(Y1, . . . , Yn) and the independent distribution

∏

i
p(Yi). In case of discrete

probability distributions we can write

C(Y1, . . . , Yn) =
∑

y1∈Y1

· · ·
∑

yn∈Yn

p(y1, . . . , yn) log
p(y1, . . . , yn)

p(y1)p(y2) . . . p(yn)
.

In the following, it will be shown that in the setup of a single variable X
that influences a set of n variables Yi, the total correlation between the
Yi variables provides quantitative information on the degree of statistical
dependence between X and each of the variables Yi. This relationship is
particularly interesting in all the cases in which X is a latent (unobservable)
variable while the values assumed by the variables Yi can be measured.

In particular, we will prove that the average mutual information between
X and each variable Yi is asymptotically equal to the total correlation among
the variables Yi divided by n when n → ∞. The application of this result
will then be discussed in the stochastic resonance setup. It will be shown
that this relationship between mutual information and total correlation al-
lows tuning the level of noise without knowing the conditioning signal. The
paper concludes with a final remark on the implications of this asymptotic
equivalence, briefly outlining possible future work on the topic.

2. Proof

Let us compute the expected value of the mutual information between
the conditioning variable X and a generic variable Yi:

Ei [I(X;Yi)] =
1

n

n
∑

i=1

(H(Yi)−H(Yi|X)) (1)

where I(·; ·) denotes the mutual information, H(·) is the Shannon entropy
and H(·|·) is the conditional entropy. Denoting by C(Y1, . . . ,Yn) the total
correlation of the variables Y1, . . . , Yn:

C(Y1, . . . ,Yn) =
∑

y1∈Y1

· · ·
∑

yn∈Yn

p(y1, . . . , yn) log
p(y1, . . . , yn)

p(y1)p(y2) . . . p(yn)

=

n
∑

i=1

H(Yi)−H(Y1, . . . ,Yn), (2)
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we can write

C(Y1, . . . ,Yn) + I(X;Y1, . . . ,Yn) =

=

n
∑

i=1

H(Yi)− H(Y1, . . . ,Yn) + H(X) + H(Y1, . . . ,Yn)− H(X,Y1, . . . ,Yn)

=
n

∑

i=1

H(Yi)− (H(X,Y1, . . . ,Yn)− H(X)). (3)

By using the conditional independence assumption H(Yi|Yi−1,Yi−2, . . . ,Y1,X) =
H(Yi|X) the term H(X,Y1, . . . ,Yn) can be expanded recursively as:

H(X,Y1, . . . ,Yn) = H(Yn|Yn−1,Yn−2, . . . ,Y1,X) + H(Yn−1,Yn−2, . . . ,Y1,X)

= H(Yn|X) + H(Yn−1,Yn−2, . . . ,Y1,X)

= H(Yn|X) + H(Yn−1|X) + H(Yn−2,Yn−3 . . . ,Y1,X)

= ...

=
n

∑

i=1

H(Yi|X) + H(X). (4)

Substituting 4 into 3 yields

C(Y1, . . . ,Yn) + I(X;Y1, . . . ,Yn) =

n
∑

i=1

(H(Yi)− H(Yi|X)) (5)

from which 1 can be rewritten as

Ei [I(X;Yi)] =
C(Y1, . . . ,Yn)

n
+

I(X;Y1, . . . ,Yn)

n
. (6)

From the relation
0 ≤ I(X;Y1, . . . ,Yn) ≤ H(X) (7)

and the fact that H(X) is independent from n we have

lim
n→∞

I(X;Y1, . . . ,Yn)

n
= 0 (8)

and therefore

lim
n→∞

Ei [I(X;Yi)] =
C(Y1, . . . ,Yn)

n
. (9)
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3. Examples

As briefly explained in the introduction, studying approximations of the
input-output mutual information in presence of stochastic resonance has
great practical importance. Furthermore, in presence of stochastic resonance,
the mutual information varies under one simple parameter, noise, and its
variation assumes a well known bell shaped curve. It appears thus a very
appealing setting for studying the relationship between spurious correlation
and mutual information proved in the previous section. The following sub-
sections present numerical simulations of two neuron models commonly used
in the study of stochastic resonance, namely the binary threshold model and
the FitzHugh-Nagumo neuron.

3.1. Binary threshold model

The most basic model for studying the stochastic resonance effect is given
by the binary neuron threshold model [12], defined by the following equation:

R(t) =

{

1 if S(t) + ξ(t) > θ

0 otherwise
(10)

where S(t) is the input, R(t) is the output, ξ(t) is Gaussian white random
noise and θ is the threshold, which was set to 1 in our experiments. Two
inputs were considered. The first is a periodic one, in detail 1

2
(1+ sin(2πft))

with f = 10Hz. The second is a classic aperiodic test signal [34, 35], gener-
ated by the convolution of Gaussian white noise with a Hanning window of
width of 6 seconds, scaled to be underthreshold.

The results for the two input signals are presented in Fig.1 and Fig.2,
respectively. Each figure reports, for various noise intensities, the average
value of the mutual information between the input and the output of the
units (which are, in our experiment, identical but conditionally independent).
The plots also report the approximation obtained by dividing by n the total
correlation computed over n units, for different values of n. From the plots
it can be clearly seen that the estimation approaches the mutual information
from underneath by increasing the number of units. Furthermore, the results
suggest that even for a relatively limited number of neurons, the proposed
approximation can be used for inferring the level of the average stochastic
dependence between the conditioning input and the output.
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3.2. FitzHugh-Nagumo model

The second model of neuron on which the relationship between mutual
information and total correlation was tested is the FitzHugh-Nagumo model.
This model constitutes a simplification of the Hodgkin-Huxley equations of
electrical activity in the squid axon, and provides a good trade-off between
simplicity and capacity of modeling the firing dynamics of real neurons.

Its dynamics can be formulated as follows:

ǫv̇ = v(v − a)(1− v)− w + A+ S(t) + ξ(t) (11)

ẇ = v − w − b (12)

where v(t) and w(t) are the state variables corresponding to fast and slow
dynamics of the system, respectively, and S(t) denotes again the input sig-
nal while ξ(t) represents additive noise. The remaining terms are constant
parameters which were set to commonly used values [34], namely ǫ = 0.005,
a = 0.5, b = 0.15, A = 0.04. The dynamics was simulated using the fourth-
order Runge-Kutta method with a time step ∆t = 0.005(sec), for 214 simu-
lation steps.

The input signal S(t) is the same aperiodic signal introduced in the pre-
vious section. The output signal R(t) was defined as the average number of
spikes per second produced by the model. A spike is assumed to occur every
time v(t) crosses the value of 0.5 with a positive slope, and the averaging is
computed by passing a 6 seconds unit-area symmetric Hanning window on
the spike train.

Fig.3 shows the result depicting the expected value of the mutual infor-
mation between the input signal S(t) and the output signal R(t), and the
total correlation among two and three neurons. From the figure, we note that
the approximation of the mutual information in terms of total correlation re-
mains valid even for neurons with internal dynamics as the FitzHugh-Nagumo
model.

4. Conclusions and future works

In this paper, we show that if multiple, observable, random variables are
directly influenced by the same latent random variable, then the value of the
spurious correlation among the observable variables can be used for inferring
the strength of relationship between the latent variable and the observable
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variables. In particular, this work proves that the spurious correlation, ex-
pressed as the total correlation among the observable variables divided by
the number of variables, is asymptotically equal to the average mutual in-
formation between the latent variables and each of the observable variables,
as the number of variables tends to infinity. The result finds practical ap-
plication in all the cases in which an unknown signal can be measured by
multiple sources, and there are controllable parameters that can modulate
the information transfer between the unobservable signal and the measured
information.

As an example, this paper shows the possible application of the method
to the tuning of the noise level in Stochastic Resonance. Stochastic reso-
nance has been gathering considerable attention in engineering. Although
the emergence of stochastic resonance was shown to occur for a wide range
of noise intensities under opportune conditions [36], the maximization of the
SR effect remains of fundamental interest in practical applications.

In literature, the emergence of SR is measured and evaluated by using
both the input and the output signal of the system. However, from the per-
spective of practical applications, both in physics and engineering, the neces-
sity of knowing the input for maximizing the stochastic resonance effect, i.e.
for actually being able to better observe such input, remains a great obstacle
in the full exploitation of SR. For instance, in the case of a subthreshold
signal, the threshold could be actually the minimum level measurable with
the available instrumentation. In such cases, SR may be the only way for
obtaining information on the signal, and thus assuming the knowledge of the
input for maximizing the SR effect makes no sense.

This paper aims at filling this lack and opening the possibility of a more
widespread application of SR in engineering applications. We must note
that this paper only proves that for a sufficient large number of observable
variables, their total correlation divided by the number of variables asymp-
totically tends to the mutual information. This result does not guarantee
that the level of noise that maximizes the total correlation is the level of
noise that maximizes the mutual information for a finite number of vari-
ables. However, the numerical results presented in the paper show that, in
practice, even for a relatively low number of units the total correlation can
be used to identify the optimal noise with a good approximation. Future
work will need to concentrate in identifying the conditions under which this
relationship is satisfied.

The results presented in this paper turn out to be interesting for the bi-
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ological field as well. In particular, they suggests that neural populations
may be able to tune the SR effect using only total correlation between neu-
rons of the same layer, without the need to know the actual value of the
original stimulus. Even more interestingly, the link between total correla-
tion and mutual information indicates the possibility that total correlation
may be used for training complex networks, in the same that way mutual
information is used in Infomax [37] for the spontaneous development of per-
ceptual network layers. In this regard, the recent development of techniques
for computing approximations of the joint probability of a high number of
continuous variables [38], assumes particular importance, and finding a bio-
logically plausible way in which these approaches may take place in neural
networks surely deserves further investigation.

5. Acknowledgments

This work was supported by a Grant-in-Aid for Young Scientists (B)
Grant Number 24700193.

[1] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic reso-
nance, Reviews of Modern Physics 70 (1) (1998) 223–287.

[2] R. Benzi, A. Sutera, A. Vulpiani, The mechanism of stochastic reso-
nance, J. of Physics A: mathematical and general 14 (1981) 453–457.

[3] F. Moss, L. M. Ward, W. G. Sannita, Stochastic resonance and sensory
information processing: a tutorial and review of application, Clinical
Neurophysiology 115 (2) (2004) 267 – 281.

[4] A. A. Priplata, B. L. Patritti, J. B. Niemi, R. Hughes, D. C. Gravelle,
L. A. Lipsitz, A. Veves, J. Stein, P. Bonato, J. J. Collins, Noise-enhanced
balance control in patients with diabetes and patients with stroke, An-
nals of Neurology 59 (1) (2006) 4–12.

[5] G. Finocchio, I. Krivorotov, X. Cheng, L. Torres, B. Azzerboni, Micro-
magnetic understanding of stochastic resonance driven by spin-transfer-
torque, Physical Review B 83 (13) (2011) 134402.

[6] B. Franzke, B. Kosko, Noise can speed convergence in markov chains,
Phys. Rev. E 84 (2011) 041112.

9



[7] V. Hari, G. Anand, A. Premkumar, A. Madhukumar, Design and perfor-
mance analysis of a signal detector based on suprathreshold stochastic
resonance, Signal Processing 92 (7) (2012) 1745 – 1757.

[8] T. Oya, Thermal-noise-exploiting operations of single-electron major-
ity logic circuits with conventional clock signals, Nanotechnology, IEEE
Transactions on 11 (1) (2012) 134–138.

[9] T. Hindo, S. Chakrabartty, Noise-exploitation and adaptation in neu-
romorphic sensors, in: Society of Photo-Optical Instrumentation Engi-
neers (SPIE) Conference Series, Vol. 8339 of Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, 2012.

[10] Q. Li, Z. Li, J. Shen, R. Gao, A novel spectrum sensing method in
cognitive radio based on suprathreshold stochastic resonance, in: Com-
munications (ICC), 2012 IEEE Int.Conf. on, 2012, pp. 4426–4430.

[11] A. Das, N. G. Stocks, E. L. Hines, Enhanced coding for exponentially
distributed signals using suprathreshold stochastic resonance, Commu-
nications in Nonlinear Science and Numerical Simulation 14 (1) (2009)
223 – 232.

[12] N. G. Stocks, Suprathreshold stochastic resonance in multilevel thresh-
old systems, Phys. Rev. Lett. 84 (2000) 2310–2313.

[13] G. Deco, B. Schrmann, Stochastic resonance in the mutual information
between input and output spike trains of noisy central neurons, Physica
D: Nonlinear Phenomena 117 (14) (1998) 276 – 282.

[14] T. Kondo, T. Munakata, Stochastic resonance and self-tuning: A simple
threshold system, Phys. Rev. E 79 (2009) 061121.

[15] N. Brunel, J.-P. Nadal, Mutual information, fisher information, and pop-
ulation coding, Neural Comput. 10 (7) (1998) 1731–1757.

[16] T. Hoch, G. Wenning, K. Obermayer, Optimal noise-aided signal trans-
mission through populations of neurons, Physical Review E 68 (1) (2003)
011911.

[17] M. D. McDonnell, N. G. Stocks, Maximally informative stimuli and
tuning curves for sigmoidal rate-coding neurons and populations, Phys.
Rev. Lett. 101 (2008) 058103.

10



[18] G. Wenning, K. Obermayer, Activity driven adaptive stochastic reso-
nance, Phys. Rev. Lett. 90 (2003) 120602.

[19] Y. Guo, J. Tan, Suprathreshold stochastic resonance in multilevel
threshold system driven by multiplicative and additive noises, Commu-
nications in Nonlinear Science and Numerical Simulation 18 (10) (2013)
2852 – 2858.

[20] S. Blanchard, D. Rousseau, F. Chapeau-Blondeau, Noise enhancement
of signal transduction by parallel arrays of nonlinear neurons with
threshold and saturation, Neurocomputing 71 (13) (2007) 333 – 341.

[21] A. P. Georgopoulos, A. B. Schwartz, R. E. Kettner, Neuronal population
coding of movement direction, Science 233 (4771) (1986) 1416–1419.

[22] A. Pouget, P. Dayan, R. Zemel, Information processing with population
codes, Nature Reviews Neuroscience 1 (2) (2000) 125–132.

[23] S. B. Laughlin, R. R. de Ruyter van Steveninck, J. C. Anderson, The
metabolic cost of neural information, Nature Neuroscience 1 (1) (1998)
36–41.

[24] K. Pearson, Mathematical contributions to the theory of evolution.–on
a form of spurious correlation which may arise when indices are used in
the measurement of organs, Proceedings of the Royal Society of London
60 (1896) 489–498.

[25] J. Aldrich, Correlations genuine and spurious in pearson and yule, Sta-
tistical Science 10 (4) (1995) 364–376.

[26] G. U. Yule, On the interpretation of correlations between indices or
ratios, Journal of the Royal Statistical Society 73 (6/7) (1910) 644–647.

[27] G. U. Yule, An Introduction to the Theory of Statistics, 6th ed., Griffin,
London, 1922.

[28] H. A. Simon, Spurious Correlation: A Causal Interpretation, Journal of
the American Statistical Association 49 (267) (1954) 467–479.

[29] W. McGill, Multivariate information transmission, Information Theory,
Transactions of the IRE Professional Group on 4 (4) (1954) 93–111.

11



[30] S. Watanabe, Information theoretical analysis of multivariate correla-
tion, IBM Journal of Research and Development 4 (1) (Jan.) 66–82.

[31] W. R. Garner, Uncertainty and Structure as Psychological Concepts,
JohnWiley & Sons, New York, 1962.

[32] T. S. Han, Nonnegative entropy measures of multivariate symmetric
correlations, Information and Control 36 (2) (1978) 133 – 156.
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Figure 1: The expected value of the mutual information and the total correlation approx-
imation for different noise levels obtained using the periodic signal reported in the text.
The top curve corresponds to the mutual information while the other curves correspond,
from bottom to top, to the total correlation approximation obtained for 2, 5, 10, 25, 50,
and 100 units, respectively. In this and in the following figures, for each setting, the simu-
lation was repeated 100 times, and the 95% confidence interval, here indicated by the error
bars, was computed. The asymptotic convergence of the total correlation (computed only
from the output values) to the mutual information can be clearly observed in the plot.
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Figure 2: The expected value of the mutual information and the total correlation approx-
imation for different levels of noise plotted for different number of units obtained for the
aperiodic input signal described in the text.
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Figure 3: The expected values of the mutual information (top curve) and the total cor-
relation among two (bottom curve) and three (central curve) FitzHugh-Nagumo neurons
computed for different noise settings. It is easy to see that the total correlation among the
units, computed only from output signals, gives an approximation of the mutual informa-
tion between the input and the outputs. As a simple discretization of the output in 500
bins was taken to compute the (continuous) total correlation between the unit outputs
R(t), due to memory limitations only experiments for 2 and 3 units are reported.
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