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Abstract— This paper investigates touching as a natural way element of interactions between humans and preschoolers [9
for humans to communicate with robots. In particular we At older ages, touch is frequently used in the teaching of
developed a system to edit motions of a small humanoid robotb  g4rt5 or dance [10], for instance by instructors correctn
touching its body parts. This interface has two purposes: illows learner's posture or motion. Touch is particularly appegks
the user to develop robot motions in a very intuitive way, andit L :
allows us to collect data useful for studying the charactestics an intuitive method for humans to teach robots, and has been
of touching as a means of communication. Experimental restd employed to program robot arms, for example, by Voyles and
confirm the interface’s ease of use for inexpert users, and atysis Khosla in [3] and, more recently, by Grunwal, Schreiber,Alb
of the data collected during human-robot teaching episodebas  g.naffer and Hirzinger in [4].
yielded several useful insights. In this paper, we investigate the effectiveness of touchimg
a mechanism for transferring knowledge about the body from
a human to a small humanoid robot. Small humanoid robots

In order for robots to become truly integrated into everydayre quite popular and are becoming increasingly available
life, it will be necessary for humans to be able to interaeit relatively low cost. However teaching a new motion to a
with them in a natural and intuitive way. This considerationumanoid robot is currently a time consuming task, because
has recently lead to many different studies in human-robgle standard method is through the use of motion editors
interaction with the aim of finding natural ways by whichwhich require the user to set the position of each joint irheac
humans can communicate with robots (e.qg., [1]-[4]). “keyframe” (as illustrated in [11]). Although other techmies,

Abstractly, we regard communication as a process by whishich as motion capture and retargetting [12], can be emgJoye
a sender encodes a concept into a format suitable for trattiese methods are still somewhat cumbersome, and regaire th
mission though a medium, and sends this information tohaiman teacher to learn specialized techniques.
receiver, who then reconstructs (or decodes) it. We camleéivi Our goal is to create a method by which humans can
human-to-human communication roughly into verbal (whentuitively edit a robot motion without any special traigin
concepts are encoded in the form of words) or non-verbale therefore have developed a method for humans to teach
(see for instance [5]). Non-verbal communication can then bobot motions through an “observe and correct” cycle, simil
broken down further according to the transmission chanrtel a human dance or sports instruction. In each teaching
used, such as communication via vision, smell (a study @pisode, the human teacher watches the robot perform a
this communication medium is provided by [6]), or touchmotion, observes what is wrong or could be improved, and
There are a great variety of studies dealing with charatiesi touches the robot's body parts to instruct the robot how to
of visual communication, for example recognition of humarefine the motion. For example, the teacher could watch a
gestures [2], analysis of how a robot’s aspect affects humaicking motion and notice that the right leg should rise igh
robot interaction [7], and knowledge transfer through &lsuin a specific moment. S/he can then touch the leg from the
task recognition, as is in Kuniyoshi and Inoue’s [8] work itback and push it upward to express how the motion should
which a robot observes humans performing a task and rée& modified. The robot then repeats the behavior with the
ognizes various actions, from which it constructs a higiele modifications, and the cycle can be repeated several tintés un
abstract plan. However touch as a communication medium itae movement is satisfactory to the teacher.
received considerably less attention. The teacher’s touching actions are a method of encoding

Touch is an important method of communication employeahd transmitting their internal image of what the robot poest
by humans, particularly in teaching. Even at the earliessagshould be. To make communication successful, the robot must
touching behaviors have been found to be a very importahen interpret the meaning of these touches in terms of tajus

I. INTRODUCTION



body postures. However for the robot, this reconstruction Il. IMPLEMENTATION

process is not a trivial task. Not only can different touchage The purpose of the interface is to let the user play a motion

the same meaning — for instance, touching several different A : L .
and modify it through touching, and provide information
parts of the arm could all mean that the arm should moy ; : . .
about the intended meaning of touches if needed. During the

backwards — but similar touches could have different me}mmdevelopment of a motion, the user pushes the robot's body

depending on the context. For example if the robot is staydin arts, and the robot tries to predict the intended joint engl

touching the upper part of one leg could mean that ﬂgc)‘laﬁanges based on previous examples of context, touches and

leg Sh_OUId bend further backwards. However if the robot '%i t modifications. Inference of intended joint changes ti
squatting, the same touch could mean that the robot sho o(é]ches is done using a k-nearest neighbor (k-NN) algorithm
move lower to the ground by bending its knees. 2 .
ﬂn a database containing previous examples of contexthtouc
Rather than force the human user to learn an externax pose changes. If the human believes the robot does

. : : a
defined te_achlng pr_otocol _(determlr_1ed by a programmer bashe% yet have a good mapping, the user can directly set the
on €.g., INverse kinematics) we instead _take the appro?&m position and add this example of context, touch, joint
that the mapping can be constructed online from eXamp&&justments into the database of examples used by the k-
provided by the user. While observing the robot perform

o RN algorithm, thereby improving the future ability to infer
,r::[a![ftlzsske, tgi;seirtgh?ﬁze;ukr?;r?gi?;to 2;?;”%? 'tnhg‘;n:gtt')thte touch intentions. This approach is similar to the critic
and the robot res (;nds by moving its 'ointz according to tr|f?’1éthod of [13], however their system required a fixed initial
[[espo y g 1s jonts according Yatabase of context, touch, and action examples, and the

learned mapping. It is worth to stress that this is diffefesrn

. . . human critiques simply adjusted the relative weightings of
what is usually done with robot arms employed, for instanc ques simply: adjus . ghting
. . . o : ese examples in their 1-NN inference engine.
in painting and welding. In those applications, in fact, the )
) : o Throughout the text, we use capital Roman letters to
operator pushes the robot in desidered position, and the arm

moves passively following the aoplied forces. In our a h)arepresent random variables, and lowercase Roman letters to
P y g PP ) PP rr?fresent specific values taken by those variables. Lehtouc

the robot responds in a more active manner, possibly movin brmation be represented by a vect®r = (T, .... Ty, ),

- i . . |
joints which would not be moved just applying force on thg here the value of each element represents the duration that

pushed sensor locations. The idea here introduced is that . L ,
system should interpret the meaning of the touching, and neoa}Ch of theny tactile sensors distributed over the robot.s
require the user to bring each link in the desired positian fgurface were pushed.. We encode context with the following
each keyframe as is usually done with the industrial robotsr.andom variables. Let

If the robot's responses to touches are incorrect, the humart Posture vectot” = (P, ..., P,..) be the angles formed
can manually adjust its joints to teach the intended meaning PY €ach of thenp joints, _
using a separate interface (shown in Fig. 4). This simpler,* ofientation vectorO = (Oy, 0,,03) be roll, pitch and
lower level way of communicating motions allows to handle ~ YaWw, respectively, _
the failures of the system in the interpretration of therinst ~ * Velocity vectorV = (V3,V3,V3) be the velocity at the
tion meaning. The robot then uses this information to update center of gravity.
its internal mapping from touch to joint angle changes. AB is needed because the meaning of touches may depend on
instruction progresses, the learned mapping continuesetothe posture, as in the previous example in which touching
refined until ultimately the human only needs to touch thiae lap means different things depending on if the robot
robot and the robot properly adjusts its body. is standing or squatting. Likewise, the meaning of touches

In the remainder of this paper, we describe our interfaceay also depend o, for instance whether the robot is
and learning techniques in detail, and discuss how usstanding or lying down. Finally, touches may also depend on
can use this method to easily teach specific actions. \We velocity vectorV, especially if the robot is experiencing
then perform analysis of the data collected during the toustrong accelerations, for example if it is falling down. $t i
teaching interactions, to help improve our understandihg possible that the velocity of each single link should also be
how humans communicate via touch. We show that a simpfeluded, however for the moment we felt this was excessive,
linear model for mapping touch to joint angle changes cannand will put off investigating this and other features fotuite
capture the dependence of touching behavior on contework.
We then use a tree-based feature selection method to get & simplify notation, letX = (T, P,O, V) be the concate-
sense of what variables are most important in explaining thation of touchI’, postureP, orientationO, and velocityV'.
changing meaning of human touch. Our discovery was tha¢t M = (M, ..., M,,,) be a vector of desired changes in
the most important variables to consider for context seemttee n,, joint angles (i.e., motor commands). Then our goal
be the positions of those joints which determine the overaddl to learn a policy function : X — M, which maps an
orientation of each of the limbs. We finally conclude with @nput vectorz to a set of joint angle changes. Currently,
discussion of future work and suggest a possible way todurthwe use a variation of the k-nearest neighbor algorithm, thic
formalize the interaction between context, intentionctgwand despite its simplicity, performs very well in many applicais
robot body posture. (e.g., [13], [14]). Aside from simplicity, an important 1@n



we chose this algorithm was the ease with which additionadut
training data can be incorporated roven informavion [ PRl P L T
Formally, let the tuple(z®,m®) represent theith train-
ing example provided by the human, and & =
1 1 2 2 ns ng .. Collected |T LIJ=0|T2[21>0|T1[ J=0|T Iy |T L5J=U|TZIGJ=0| . |T [n]=0 |C0nsider
((xt,mb), (x*,m?),..., (™5, m"™s)) be a set ofng training examples »
examples. Sometimes we need to refer to specific elements (U= [T T=OreTe RO ToAr=0 [TSCEOP TS0 TeMr=0] Discard
of variables, so let’ represent the value of elemenof the = = = ol =
touch sensors in théth training example, and similarly for (green=pushed sensor white=not pushed sensor)
the other variables. Then, given a new inptt the system’s s of dered and discarded | "
/ ; s Rig. 1. Examples of considered and discarded examples iagpthe
outp_u_tm. can.be cpmputed by a weighted sum of the Jonﬁescribed rule.
modifications inH, i.e.,

[T [T 20 TS0 TR0 [ TIB=0 [ TIBI0 | —_[TI=0] Consider

Discard

ns
m' = Zg(x/vl’l)mz (1) sensors varies. On the flip side, this modification yields a
i=1 significant speed-up of the system — as much2@@% in
where the weight functiog(a2’, z*) is based on the Euclideansome tests. This makes it possible to calculate and display
distance between test point and training point:®. the predicted joint modifications in real-time, providingedul
visual feedback to the users while they are touching theaiirt
Sensors.

We want the weighting function to output relatively larger  apother problem with this scheme is that, due to the sym-
values when the two inputs are close to each other, apfbiry of the distance function, it is not possible to distiisty
relatively smaller values when the inputs are far away frofnether a current input sensor has been pushed for a longer
each other. A simple choice for this function that has thg snhorter time than the nearby prototypes in the trainirig se

A. Weighting schema

desired properties is This can lead to unintuitive behavior regarding the refahip
;o 1 5 between the duration of a touch and the magnitude of joint
g(@,a") = 7 + 2, 2| (@) angle changes. As a simplistic example, suppose a particula
. . . . . nsor w ive in only one training exampl nd it w
where ||-,-|] is Euclidean distance. Since the units of thao >0r was active in only one training example, and it was

) ! . pushed for 300 milliseconds, and this corresponded to desing
various input vector components are heterogeneous, it IS

. . . rgotor joint change of 40 degrees. Although a user might
important that each input vector component be normalized. ) . .
nﬁturally expect that pushing for less time will cause a fanal

Thig can l:_)e done by first dividing egch element by its sta_ndacr ange in that joint, while a longer press should produce a

dgwatlon n the exa_mple set, which IS the same as replapmg }arger joint angle change, the result with the current sehem

distance function with a Mahalanobis distance using a diago would be that any touch on that sensor with a duration differe
from 300ms would result in a smaller angle change. Fig. 2

covariance matrix.
Unfortunately, this technigque does not give any “priority illustrates this problem.
To overcome this counterintuitive behavior, we compute two

more important elements — for instance, the touch inforomati
does not get any more importance than the context featurgs. .
This means that points with a very similar context (efictors,ai andf3;, and then redefing as
similar posture) may dominate the determination of the wiyt ; ;
irrespef:)tive of zhe tguching pattern. This is exacerbatethb P g(@',2") = aif; H (1 - 5(’%)) 4)
relatively high dimension of the input space and the limited {s:t.=0}
number of example points. This can lead to very unintuitig, .o
behaviors, for instance if a user is focusing on a leg motion
and therefore only provides examples involving a leg, then t
pushing on an arm will cause the leg to move, a surprising @i = H _15 (5)
behavior indeed! {e:ti>0}

To solve this problem, we modify(z’, z%) to be zero if
the set of activated (i.e., nonzero) touch sensor is not a
subset of the active touch sensorstini.e. g(z/, %) = 0 if

is a value which increases linearly as the pushing time in-

creases; the result is that increasing the pushing time ef on

sensor will only increase the weight of the examples in which

H (1 _ 5(@) -0, A3) tha_t sensor was pushed, and it will not have an effect on the
weights of other examples. The second fagtpaccounts for

the context information, as well as for the touch sensorgwhi

where the threshold functiod(u) = 1 if w > 0 and O gre active in the input but are not active in tith example.
otherwise. Some examples are provided by Fig. 1. This is defined as

With this modification, most of the counterintuitive behav-
iors are avoided, although it can make the mapping less gener 8 1 (6)
and it introduces some discontinuities when the set of press 1 +d;

{s:t.=0}




Joint modification INTUITIVELY EXPECTED Input:500ms Joint modification DISTANCE BASED
(output) Output:turn 60° (output)
Input:400ms O
Acquired example Output:turn 50° Acquired example
Input:push 300ms O Input:push 300ms
Output:turn 40° Input:200ms Output:turn 40° Input:400ms
Input:200ms O Distance: 100 O Distance: 100
Output:turn 20° Input:100ms Output: turn 20° Output:turn 20° Input:500ms
Input:100ms Distance: 200 Distance: 200
Output:turn 10° O Output:turn 10° O O Output:turn 10°
> 3
pushing time (input) pushing time (input)

Fig. 2. Expected behavior versus the behavior obtainedngctiie output by a decreasing function of the distance.

where performed by the robot. The humans can pause, rewind,
and step through frames at their leisure.
d; = 3) The user chooses an instant where the posture of the
Z 12 1 |lp — P2 + [lof — of[|2 + [[o — oi||2 (7) ;)(:)ti)r?tt should be modified, and playback is frozen at that

4) The human touches the robot model’'s body parts on a
Essentially,d; is a Euclidean distance between and 2, touch screen to modify the robot's posture.
except ignoring the touch sensors which are nonzere'in Currently we use a touch screen but other devices, such as
(since they are used alreadydn). The specific choice of the 3 haptic joystick, or simply a mouse, could also be used.
form of 5 is admittedly arbitrary, and in future work we will\when the posture in one moment is modified, it becomes a
investigate other types of weighting functions. new keyframe, and the motion in the surrounding frames is
then altered via interpolation. In the current implementat
a simple linear interpolation is used, but the software has

For our experiments, we used a VStbnésiON 4G, a been designed to easily permit the use of more sophisticated
humanoid robot with 22 degrees of freedom. Fig. 3(a) showsrderpolations, for instance the method used by [16].
photo of the robot, and a diagram depicting the configurationWhile the robot is performing a motion, the joint positions
of the joints is given in Fig. 3(b). are acquired using the potentiometers present in each of the

It is impractical to use touch sensors directly on the rabotservomotors, while the overall orientation of the robot is
body for several reasons. This robot, and others like it, acaptured using a Motion Analysis Corp. capture systefhe
typically quite small (often under 50cm/20inches tall),danon-screen playback (implemented using Java 3D) displays th
use servomotors with an internal PID controller. With suctobot’s links as parallelepipeds with size and joint posis
devices, it is not possible to the detect the force applied Ipyoportional to the limk size and joint positions of the real
the user as might be done in e.g., larger pneumatic-actuateddware. Each parallelepiped’s face simulates a toucsosen
robots, in which it is possible to measure the error betwhen tBecause the touch screen currently only tracks a single,poin
target position and the actual position of the actuator®])[1 and discards pressure information, the user is allowed to
The small size of these humanoids also makes it difficult touch various parts of the 3D-model in one keyframe, and
place and wire touch sensors over the entire body. Anothibe duration of each touch is considered to be the pushing
difficulty with attempting to directly use touch for teachin intensity. As the user touches the robot, the parts beinggulis
these small robots is that the robot motions are often quitecome more and more red (see Fig. 3(c)), so the user knows
fast, so real-time interaction might be impossible for a ham what input the robot is receiving.

(especially if the robot is flying through the air as in a jungpi  If the system fails to predict the desired modification, vihic
motion). can be immediately seen by the robot’s response, the user can
To overcome these issues, we developed a system whishnually correct the robot’s joints. To do so, the interface

combines the real-world robot actions with a virtual touchallows the human to independently switch off any of the
screen driven interface. In this system: motors, and the human can then move the limbs of the physical

1) A motion is performed by the physical robot, and theobot into the desired position. To fine tune the various es\gl
position of the robot body is recorded with a real-timethe interface provides one slider for each of the servonsptor
motion Capture System_ The use Of motion Capture (ﬂ$ ShOWﬂ in F|g 4. The SyStem can then acquil’e the rObOt,S
the real robot he|ps prevent any Simu|at0r-rea|ity gap_neW jOint angles, and then stores the context, tOUCh, amd _|0|

2) A computer interface allows to the human to watcRngle changes as a new training example.

a virtual 3D reconstruction of the recorded motion

2for details see http://ww. notionanal ysis. conl
Ihttp: // www. vstone. co.jp appl i cati ons/ movenent / neur o/ eagl esyst em ht nm

{s:ti=0}
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Fig. 3. (a) A photo of the VStone VisiON 4G humanoid robot, g¥chematic of its joints, and (c) the 3D rendered model, liee left upper arm and
forearm have just been pushed. The 3D model display alsossttmvprojection of the center of gravity onto the ground igepnted by an orange sphere)
and its velocity (a blue arrow, in this figure surrounded byeHoyv border to make it more easily visible to the reader)chhtan be useful to expert users
in motion development.
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Fig. 4. A snapshot of the commands window of the developeetfacte.

We used the interface to teach two motions: jumping (witbould be learned simply with linear regression. This is ulksef
the help of a rubber band pulling the robot up since thHmth as a baseline to compare with other methods, and to
servo torque is not sufficient for liftoff) and walking. Leid help develop some intuitions about what makes the problem
set of examples collected during these teaching episodesdifécult, for instance understanding what kinds of touches
denoted byJUM P and W ALK, respectively. Fig. 5 shows change their meaning due to context. The second analysis was
an image sequence of the learned jumping motion, which waslustering / feature-selection analysis, in which wedttie
taught in just seventeen minutes. Teaching the same motiomerstand which pose, orientation, and velocity varable
using a traditional motion editor took more than forty migsit most closely associated with changing touch behaviors.

(in future work more comparisons between the teaching timeFor the first analysis, using the definitions of the random
required with the teaching by touching approach and the timariables from Section Il (organized as row vectors), let
spent employing a classical interface will be provided). M= XA +e ®8)

IV. DATA ANALYSIS be a linear model of input to output, where is a matrix

We performed two kinds of analysis, both of them aimed@hose number of rows is the same as the number of elements
mainly at understanding the role of context. First, we wdntef X and number of columns is the number of joint anglgs,
to see if the mapping from touch to change in joint anglende represents Gaussian noise with zero mean and spherical



Fig. 5. An image sequence of the developed jumping motion.

TABLE |

covariance. Given a set of training data, organlzed Into @ixna AVERAGE RMSD ERROR BY LINEAR REGRESSION AND KNN.

of inputs X and outputsM, the matrix A minimizing the
squared error can be found by ridge regression [17], i.e.,

Training dataset| Test dataset| Lin. Regr. | k-NN

A=(X"X+al)"'X'M ) JUMP JUMP 0.2846 | 0.1985

where the T superscript indicates the transpose operation, Jump WALK 13.7177 | 0.5938
is the identity matrix, andy is a small number which can Jump COMBINED | 2.0567 | 1.0198
be interpreted as an estimate of the standard deviationeof th WALK JUMP 0.0314 | 0.0588
Gaussian noise. The value of is chosen heuristically, by WALK WALK 03522 | 0.2028
manually finding a value that gives low cross validation erro WALK COMBINED | 0.3626 | 0.2223
We fixeda = 0.1 for all experiments, then found using the COMBINED JumMP 03219 | 0.1425
entire training dataset for each experiment. COMBINED WALK 3.7272 | 0.3006
Looking at the magnitudes of the entries & provides COMBINED | COMBINED | 1.5462 | 0.7778

insight into the importance of each of the input featuresjevh
the sign helps us to understand which features produceasimil
effects and WhICh produce opposite effects. Fig. 6 gives @ . ot feature selection
visual representation oA superimposed on the model of the
robot. In this figure, the touch sensors of the robot are edlor We hypothesize that the reason the nonlinear technique
according to their corresponding row i for two different works better than the linear regression model is because
joints (each corresponding to a different columnAn. For the human produces touches differently based on the robot
example in Figs. 6(c) and 6(d), corresponding to joint 7 heacontext variables. We illustrate this idea in Fig. 7. In this
face is colored green if the corresponding entry in columi 7 owodel, the human has an internal belief about how joints
A is positive, and red if it is negative, while the color intiéps should be modified in order to improve the task performance.
represents the magnitude of the value. In general the valldeanwhile, the human also evaluates some features of the
follow intuition fairly well — for instance, for determinmthe context to determine how to best communicate this desire to
arm orientation changes, the sensors with high coefficimmts the robot. The pattern of touches is thus jointly determiigd
mainly the ones on the arm. the desired changes and the current robot context. When the
In Table I, we show the prediction error when the matrikuman simultaneously touches and directly manipulates the
learned from one of the training sets (or from the combingdbot joints, we can observe all of the nodes in the lower part
dataset), is tested for its ability to predict itself, thehat of the graph — the context, the touches, and the intendetl join
dataset, or the combined dataset. Each entry shows thegavesngle changes — while the human’s intention and percepfion o
Euclidean distance. For comparison, we compute the sathe context remain hidden. However, when the human is not
values for the k-NN algorithm described in Section 1l. Wegroviding direct joint manipulation, the correspondingdeo
can see that although the linear regression model is sometirhecomes hidden, and the goal of the robot is to infer the galue
able to make very accurate predictions, at other times li fait that node from the observed touch and context data.
badly. Meanwhile, our k-NN algorithm performs consistgntl Because we believe the touching behavior is jointly deter-
well, even when predicting the touch mapping for differemhined by the desired joint changes and the inferred context,
action sequences. we wanted to see if it is possible to determine a few context



@) (b) (© (d)

Fig. 6. The importance of each of the sensors in determirtiegvariation of the head orientation ((a) and (b), joint 1 a.FR(b)) and the variation of
the elbow joint angle((c) and (d), joint 7 of Fig. 3). The war$ sensors are colored red or green depending on the sitre oélative coefficient, while its
absolute value is represented by the intensity of color. Kowesphere highlights the position of the joint which degderon the coefficients used to color
the sensors.

TABLE Il
LEVELS IN THE DECISION TREE OF THE FEATURES

perceived
context

intended joint
modification

............................................ Foaturs Da@set!  jymp | WALK | COMBINED
joint 1 2 2
prysica. odcation dirscty joint 2 17,2122 9 19,23
joint 3 3 3 3
joint 4 511
Fig. 7. A schema resuming the various concepts. joint 6 2
joint 7 20 22
joint 8 5,8,19 5,10
variables that can predict when the touching behavior will joint 9 1 3 1
change — i.e., when the mapping from touches to joint angle joint 11 10
changes becomes non-linear. To do this, we used a tree-based joint 12 0 1 0
technique, Quinlan’s C4.5 algorithm [18]. The most telling joint 14 3
indicator of contextual influence is when the same touch joint 15 2810
causes a joint to be adjusted in a different direction. Thoeee joint 16 5 3.4 7
we created a simplified problem of discriminating directain yaw 0.2

joint angle change given touch and context. For each trginibevels at which the various features appear constructiegttitee with each
examplexr’ we create a target variabje = (¢, ..., quM) based of the three matrices as training data. Only the featureshwhppear at least

i . . . in one of the trees had been reported in the table. The joimtbeus are the
onm’, Where, each element is set +al if the corresponding ones reported in Fig. 3(b). The entry “heading”, is part &f tieading, attitude
element inm® is larger than some threshotd —1 if it iS and bank triple used to define the orientation.
smaller than—7, and O otherwise. In practice we setto
a value of 5 degrees. Note that although in principle this
could result as many unique target values as training point®dy, which determine the global position of the limbs, are
in practice of the 238 collected examples, there were only 88ed as a discriminating attribute in high (near the roa@le
unique values of;. We then ran the Q4.5 algorithm, withof the three. Although we did not predict this beforehand; th
pruning, on each of the datasets (JUMP, WALK, and thmakes intuitive sense, suggesting that the meaning of thahto
combination), which tries to predict the direction of joamgle depends primarily on the overall positions of the limbs.
changes? from the touch and context variablés. We then Also somewhat surprising from this analysis is the fact that
examined where each context variable appeared in the trabs, robot orientation and velocity do not appear very high in
to see if any of these consistently appeared high in the treey of the trees. We hypothesize that this might not be the
(suggesting they have a great influence in determining thase were we teaching more dynamical motions, and so in
direction of change). Table Il shows the level at which thiiture work we will investigate this hypothesis more deeply
various context features appear (notice that one featume ca
appear multiple times, along different paths of the tree). V. CONCLUSION AND FUTURE WORK

The most interesting observation from Table Il is that for We have developed an interface for teaching robots through
all data sets, the position of the joints near the trunk of theuching, which allows the user to continuously refine the



meaning of their touches by directly manipulating the lirolbs It is then clear that the main limitation of this approach is
the robot. The interface we have developed is readily usat the motion is still defined by a sequennce of postures, or
by inexpert users, and allows people to teach robots n@wother terms, keyframes. In future works we are going to
behaviors much more quickly than through more traditiongliow a single touch to modify the complete motion, to make
motion editors. We have hypothesized that one reason a ling# editing process ever more general and more similar to the

model is not sufficient to learn the mapping from context anghse of a human learner.

touch to changes in joint angles is because context and touch
interact in a nonlinear way. We applied the C4.5 algorithm as
a first step for gaining insights about which features of th¢i]
physical world are related to how humans express their inten
tions through touching. This can be interpreted as attergpti

to learn the mapping from the physical context to the peezkiv [2]
context, using the touch and joint angle information to tinfe
the different categories of perceived context. 3

Our k-NN algorithm does not directly represent the context,
touch, and human intention as separate variables. However |
. ; - . .[4]
is possible that we could divide the context into a few baS|J:
categories (e.g., squatting, standing, etc.), perhapyj usie
features discovered from our tree-based analysis, and th
learn a separate kNN model, or perhaps even a linear modEﬁT
for each context category. In future work, we intend to model
each of the nodes shown in Fig. 7 as either discrete or Gawssi
(or mixtures of Gaussian) random variables, and use moﬁé]
sophisticated Bayesian techniques to infer their paraimete
given training data. In this way we can jointly learn the st ol’]
context categories, the variables that are needed to ihéer t
context, and the mapping from touch to joint modifications
given context. (8]

An important future goal for this work is to apply similar
methodologies to bigger robots with more sensors and actua-
tors. In such a scenario, the virtualization of the touctseen [©]
will not be necessary, except perhaps for actions that are to
fast for the human to manipulate in real-time. This amplifies
the advantage of our approach, since complex robots wi]
many sensors and actuators are even more difficult to program
using traditional motion editors. Moreover, the use of real1]
sensors may make it possible to discriminate between difter
kinds of the touch, for example differentiating betweengon[lz]
soft touching patterns and short, which can increase thgeran
of possible human instructions. From a technical standpoin
we have written our code with portability in mind, in order 1913
make migration to new platforms such as human-size androids
relatively painless.

As we continue to improve this interface, we will be able t[)M]
perform further studies in the analysis of touching as an-int[15]
itive way for users to interact with robots. We are particiyla
interested in further investigating the importance of vasi [16]
context features, and how they influence the intended messag
conveyed through touching communication. Importantly, we
believe it will be important to extend the context to includém
timing related features, such us the elapsed time between i3]
maximum/null robot’s acceleration and the pushing time. VY‘fg]
expect further development of this system to yield inténgst
new insights into the human touching behavior, as well as a
more effective method for teaching robots.
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